P. Wrigley, P. Wood, Paul Stewart, R. Hall, D. Robertson
{"title":"Design for Plant Modularisation: Nuclear and SMR","authors":"P. Wrigley, P. Wood, Paul Stewart, R. Hall, D. Robertson","doi":"10.1115/ICONE26-81760","DOIUrl":null,"url":null,"abstract":"The UK Small Modular Reactor (UKSMR) programme has been established to develop an SMR for the UK energy market. Developing an SMR is a multi-disciplinary technical challenge, involving nuclear physics, electrical, mechanical, design, management, safety, testing to name but a few.\n In 2016 Upadhyay & Jain performed a literature review on modularity in Nuclear Power. They concluded that although modularisation has been utilised in nuclear to reduce costs, more work needs to be done to “create effective modules”. Hohmann et al also concluded the same for defining modules in the chemical process plant industry.\n The aim of this paper is to further define modules with a particular focus on an SMR for the UK market, the UKSMR. The methods highlighted may be relevant and applied to other international SMR designs or other types of plant.\n An overview and examination of modularisation work in nuclear to date is provided. The different configurations are defined for the Nuclear Steam Supply System (NSSS) in primary circuits and then for Balance of Plant (BOP) modules. A top level design process has been defined to aid in the understanding of design choices for current reactors and to further assist designing balance of plant modules.\n The paper then highlights areas for additional research that may further support module design and definition.","PeriodicalId":289940,"journal":{"name":"Volume 9: Student Paper Competition","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: Student Paper Competition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ICONE26-81760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
The UK Small Modular Reactor (UKSMR) programme has been established to develop an SMR for the UK energy market. Developing an SMR is a multi-disciplinary technical challenge, involving nuclear physics, electrical, mechanical, design, management, safety, testing to name but a few.
In 2016 Upadhyay & Jain performed a literature review on modularity in Nuclear Power. They concluded that although modularisation has been utilised in nuclear to reduce costs, more work needs to be done to “create effective modules”. Hohmann et al also concluded the same for defining modules in the chemical process plant industry.
The aim of this paper is to further define modules with a particular focus on an SMR for the UK market, the UKSMR. The methods highlighted may be relevant and applied to other international SMR designs or other types of plant.
An overview and examination of modularisation work in nuclear to date is provided. The different configurations are defined for the Nuclear Steam Supply System (NSSS) in primary circuits and then for Balance of Plant (BOP) modules. A top level design process has been defined to aid in the understanding of design choices for current reactors and to further assist designing balance of plant modules.
The paper then highlights areas for additional research that may further support module design and definition.