Charence Wong, S. McKeague, J. Correa, Jindong Liu, Guang-Zhong Yang
{"title":"Enhanced Classification of Abnormal Gait Using BSN and Depth","authors":"Charence Wong, S. McKeague, J. Correa, Jindong Liu, Guang-Zhong Yang","doi":"10.1109/BSN.2012.26","DOIUrl":null,"url":null,"abstract":"Changes in gait can be caused by a wide range of health complications. As deviations in gait may be an indicator of deteriorating health, abnormalities can be used as a surrogate measure for detecting the onset of certain symptoms. Previous studies have demonstrated the value of wearable sensing for gait analysis. This paper demonstrates the added value of using a depth vision sensor combined with wearable sensors for gait analysis. It also presents a method for extracting a robust set of depth features. The preliminary results from a simulated homecare environment using a three-layer artificial neural network classifier demonstrate the advantages of using a depth sensor for gait analysis.","PeriodicalId":101720,"journal":{"name":"2012 Ninth International Conference on Wearable and Implantable Body Sensor Networks","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Ninth International Conference on Wearable and Implantable Body Sensor Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2012.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
Changes in gait can be caused by a wide range of health complications. As deviations in gait may be an indicator of deteriorating health, abnormalities can be used as a surrogate measure for detecting the onset of certain symptoms. Previous studies have demonstrated the value of wearable sensing for gait analysis. This paper demonstrates the added value of using a depth vision sensor combined with wearable sensors for gait analysis. It also presents a method for extracting a robust set of depth features. The preliminary results from a simulated homecare environment using a three-layer artificial neural network classifier demonstrate the advantages of using a depth sensor for gait analysis.