Enhanced Classification of Abnormal Gait Using BSN and Depth

Charence Wong, S. McKeague, J. Correa, Jindong Liu, Guang-Zhong Yang
{"title":"Enhanced Classification of Abnormal Gait Using BSN and Depth","authors":"Charence Wong, S. McKeague, J. Correa, Jindong Liu, Guang-Zhong Yang","doi":"10.1109/BSN.2012.26","DOIUrl":null,"url":null,"abstract":"Changes in gait can be caused by a wide range of health complications. As deviations in gait may be an indicator of deteriorating health, abnormalities can be used as a surrogate measure for detecting the onset of certain symptoms. Previous studies have demonstrated the value of wearable sensing for gait analysis. This paper demonstrates the added value of using a depth vision sensor combined with wearable sensors for gait analysis. It also presents a method for extracting a robust set of depth features. The preliminary results from a simulated homecare environment using a three-layer artificial neural network classifier demonstrate the advantages of using a depth sensor for gait analysis.","PeriodicalId":101720,"journal":{"name":"2012 Ninth International Conference on Wearable and Implantable Body Sensor Networks","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Ninth International Conference on Wearable and Implantable Body Sensor Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2012.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Changes in gait can be caused by a wide range of health complications. As deviations in gait may be an indicator of deteriorating health, abnormalities can be used as a surrogate measure for detecting the onset of certain symptoms. Previous studies have demonstrated the value of wearable sensing for gait analysis. This paper demonstrates the added value of using a depth vision sensor combined with wearable sensors for gait analysis. It also presents a method for extracting a robust set of depth features. The preliminary results from a simulated homecare environment using a three-layer artificial neural network classifier demonstrate the advantages of using a depth sensor for gait analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于BSN和深度的异常步态增强分类
步态的变化可由多种健康并发症引起。由于步态偏差可能是健康状况恶化的一个指标,异常可以用作检测某些症状发作的替代措施。先前的研究已经证明了可穿戴传感对步态分析的价值。本文论证了将深度视觉传感器与可穿戴传感器相结合用于步态分析的附加价值。提出了一种鲁棒深度特征提取方法。使用三层人工神经网络分类器模拟家庭护理环境的初步结果证明了使用深度传感器进行步态分析的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mobile Clinical Gait Analysis Using Orient Specks Extreme Physiological State: Development of Tissue Lactate Sensor A Novel and Miniaturized 433/868MHz Multi-band Wireless Sensor Platform for Body Sensor Network Applications B²IRS: A Technique to Reduce BAN-BAN Interferences in Wireless Sensor Networks Brain-Computer Interface Signal Processing Algorithms: A Computational Cost vs. Accuracy Analysis for Wearable Computers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1