Elisha Mercado*, Chao Yuan, Yan Zhou, Jiahan Li, James H. Edgar, Martin Kuball*
{"title":"Isotopically Enhanced Thermal Conductivity in Few-Layer Hexagonal Boron Nitride: Implications for Thermal Management","authors":"Elisha Mercado*, Chao Yuan, Yan Zhou, Jiahan Li, James H. Edgar, Martin Kuball*","doi":"10.1021/acsanm.0c02647","DOIUrl":null,"url":null,"abstract":"<p >Hexagonal boron nitride (h-BN) has been highlighted as a promising low-dimensional material for thermal management of next-generation devices. The theory predicts that the thermal conductivity of h-BN increases above the bulk value as the thickness is reduced, but previous reports on few-layer (5–11 layer) h-BN have shown the opposite trend. We investigated the effect of isotopic engineering on the thermal properties of 11-layer h-BN single-crystal flakes. The thermal conductivities of natural (22% <sup>10</sup>B, 78% <sup>11</sup>B) and monoisotopic (99% <sup>10</sup>B) h-BN were determined by a modified optothermal Raman method in the range 300–400 K. At room temperature, values were as high as (630 + 90/–65) Wm<sup>–1</sup> K<sup>–1</sup> for monoisotopic h-<sup>10</sup>BN and (405 + 87/–65) Wm<sup>–1</sup> K<sup>–1</sup> for natural h-BN, corresponding to an isotopic enhancement of close to 60%. Both measured thermal conductivities either match or exceed previously reported values for bulk crystals, while the isotopic enhancement factor is approximately 35% higher for the isotopically enriched thin crystal compared to the equivalent bulk materials. The work presented here demonstrates isotopic engineering as a viable route to increased thermal conductivity in atomically thin h-BN, making it an outstanding platform material for thermal management in next-generation device applications.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"3 12","pages":"12148–12156"},"PeriodicalIF":5.5000,"publicationDate":"2020-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1021/acsanm.0c02647","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.0c02647","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 9
Abstract
Hexagonal boron nitride (h-BN) has been highlighted as a promising low-dimensional material for thermal management of next-generation devices. The theory predicts that the thermal conductivity of h-BN increases above the bulk value as the thickness is reduced, but previous reports on few-layer (5–11 layer) h-BN have shown the opposite trend. We investigated the effect of isotopic engineering on the thermal properties of 11-layer h-BN single-crystal flakes. The thermal conductivities of natural (22% 10B, 78% 11B) and monoisotopic (99% 10B) h-BN were determined by a modified optothermal Raman method in the range 300–400 K. At room temperature, values were as high as (630 + 90/–65) Wm–1 K–1 for monoisotopic h-10BN and (405 + 87/–65) Wm–1 K–1 for natural h-BN, corresponding to an isotopic enhancement of close to 60%. Both measured thermal conductivities either match or exceed previously reported values for bulk crystals, while the isotopic enhancement factor is approximately 35% higher for the isotopically enriched thin crystal compared to the equivalent bulk materials. The work presented here demonstrates isotopic engineering as a viable route to increased thermal conductivity in atomically thin h-BN, making it an outstanding platform material for thermal management in next-generation device applications.
期刊介绍:
ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.