{"title":"Pineal factors in the control of testicular function.","authors":"G A Kinson","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The mammalian pineal gland has become firmly established as a neuroendocrine structure possessing the ability to influence the functions of the sex glands. There is substantial evidence in the literature that pineal factors also affect the activities of other endocrine systems. The pineal gland is thus conceivably far-reaching in its regulatory actions on physiological function, involving actions on the adrenal cortex, the thyroid, and parathyroid glands as well as the gonads of both sexes. The pineal gland of the hamster and the rat responds to environmental influences, particularly changes in length of the daily photoperiod, and in turn exerts regulatory effects on the activity of the testis. This relation is much more sensitive in the hamster where lack of adequate illumination stimulates pineal antigonadal activity to produce inhibition of both testicular gametogenesis and androgenesis. Involvement of the pineal in these responses to darkness or blinding has been clearly demonstrated by the negating effects of its removal. The physiological role of the pineal in regulating seasonal changes in testicular activity and reproductive capacity of the hamster has now been formulated (Reiter, 1973a, 1973b). The laboratory rat, a continuous breeder, is far less sensitive to lack of photic input. Surgical and environmental manipulations involving altered pineal activity invariably lead to less dramatic changes in various parameters of male reproductive function. The evidence would seem to indicate that pineal function in the rat is primarily related to the regulation of testicular endocrine function. Consequently, its physiological role may be associated with seasonal changes in libido in relation to environmental influences, by virtue of the action of pineal factors on androgen status. Spermatogenesis, on the other hand, was unaffected for periods as long as 1 year after the blinding of rats at the time of puberty (Kinson and Liu, 1974). There is evidence that the pineal gland has a part to play in the timing of puberty in the rat and in circadian variations in testosterone levels in the adult animal. Two groups of compounds have been identified as pineal agents and possibly pineal hormones. While the indoles have been more widely investigated as pineal antigonadal factors, the involvement of polypeptides in pineal actions was indicated a decade ago and these compounds are now receiving vigorous attention. Pineal factors influence testicular function by interaction with the neuroendocrine system to affect pituitary gonadotropin secretion. The higher neural centers appear to be responsive to indoles and via the releasing factors give rise to changes in pituitary content and circulating levels of FSH and LH. Prolactin also has been shown to respond to change in ambient lighting and to pinealectomy. Partially purified polypeptide fractions are now claimed to be considerably more potent antigonadotropically than melatonin, the indole most favored as a pineal hormone...</p>","PeriodicalId":75452,"journal":{"name":"Advances in sex hormone research","volume":"2 ","pages":"87-139"},"PeriodicalIF":0.0000,"publicationDate":"1976-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in sex hormone research","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The mammalian pineal gland has become firmly established as a neuroendocrine structure possessing the ability to influence the functions of the sex glands. There is substantial evidence in the literature that pineal factors also affect the activities of other endocrine systems. The pineal gland is thus conceivably far-reaching in its regulatory actions on physiological function, involving actions on the adrenal cortex, the thyroid, and parathyroid glands as well as the gonads of both sexes. The pineal gland of the hamster and the rat responds to environmental influences, particularly changes in length of the daily photoperiod, and in turn exerts regulatory effects on the activity of the testis. This relation is much more sensitive in the hamster where lack of adequate illumination stimulates pineal antigonadal activity to produce inhibition of both testicular gametogenesis and androgenesis. Involvement of the pineal in these responses to darkness or blinding has been clearly demonstrated by the negating effects of its removal. The physiological role of the pineal in regulating seasonal changes in testicular activity and reproductive capacity of the hamster has now been formulated (Reiter, 1973a, 1973b). The laboratory rat, a continuous breeder, is far less sensitive to lack of photic input. Surgical and environmental manipulations involving altered pineal activity invariably lead to less dramatic changes in various parameters of male reproductive function. The evidence would seem to indicate that pineal function in the rat is primarily related to the regulation of testicular endocrine function. Consequently, its physiological role may be associated with seasonal changes in libido in relation to environmental influences, by virtue of the action of pineal factors on androgen status. Spermatogenesis, on the other hand, was unaffected for periods as long as 1 year after the blinding of rats at the time of puberty (Kinson and Liu, 1974). There is evidence that the pineal gland has a part to play in the timing of puberty in the rat and in circadian variations in testosterone levels in the adult animal. Two groups of compounds have been identified as pineal agents and possibly pineal hormones. While the indoles have been more widely investigated as pineal antigonadal factors, the involvement of polypeptides in pineal actions was indicated a decade ago and these compounds are now receiving vigorous attention. Pineal factors influence testicular function by interaction with the neuroendocrine system to affect pituitary gonadotropin secretion. The higher neural centers appear to be responsive to indoles and via the releasing factors give rise to changes in pituitary content and circulating levels of FSH and LH. Prolactin also has been shown to respond to change in ambient lighting and to pinealectomy. Partially purified polypeptide fractions are now claimed to be considerably more potent antigonadotropically than melatonin, the indole most favored as a pineal hormone...