Waveform covariance matrix design using Fourier series coefficients

Mostafa Bolhasani, Esmaeil Kavousi Ghafi, S. Ghorashi, E. Mehrshahi
{"title":"Waveform covariance matrix design using Fourier series coefficients","authors":"Mostafa Bolhasani, Esmaeil Kavousi Ghafi, S. Ghorashi, E. Mehrshahi","doi":"10.1049/IET-SPR.2019.0024","DOIUrl":null,"url":null,"abstract":"Multiple-input multiple-output (MIMO) radars may outperform other radar systems such as phased array radars, in terms of higher resolution, better detection probability in the presence of interferences, better parameter identifiability and more flexibility in beampattern design. Waveform covariance matrix design, because of its role in the beampattern synthesis process, is one of the most important problems in MIMO radar systems. In this study, the authors have proposed a closed-form solution based on Fourier series coefficients to design a covariance matrix. The resulting covariance matrix fulfils the practical constraints, i.e. positive semi-definiteness and the uniform elemental power constraint. It also provides performance similar to that of iterative methods, while requires lower computation time and provides better mean square error with respect to other existing closed-form methods. Eigenvalue decomposition is also utilised to convert the possible resulted pseudo-covariance matrices (pseudo-CM), which are not guaranteed to be positive semidefinite, into a covariance matrix. Simulation results show the performance of the proposed method.","PeriodicalId":272888,"journal":{"name":"IET Signal Process.","volume":"104 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Signal Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/IET-SPR.2019.0024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Multiple-input multiple-output (MIMO) radars may outperform other radar systems such as phased array radars, in terms of higher resolution, better detection probability in the presence of interferences, better parameter identifiability and more flexibility in beampattern design. Waveform covariance matrix design, because of its role in the beampattern synthesis process, is one of the most important problems in MIMO radar systems. In this study, the authors have proposed a closed-form solution based on Fourier series coefficients to design a covariance matrix. The resulting covariance matrix fulfils the practical constraints, i.e. positive semi-definiteness and the uniform elemental power constraint. It also provides performance similar to that of iterative methods, while requires lower computation time and provides better mean square error with respect to other existing closed-form methods. Eigenvalue decomposition is also utilised to convert the possible resulted pseudo-covariance matrices (pseudo-CM), which are not guaranteed to be positive semidefinite, into a covariance matrix. Simulation results show the performance of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用傅立叶级数系数设计波形协方差矩阵
多输入多输出(MIMO)雷达在更高的分辨率、更好的干扰检测概率、更好的参数可识别性和更灵活的波束模式设计等方面可能优于相控阵雷达等其他雷达系统。波形协方差矩阵设计是MIMO雷达系统中最重要的问题之一,因为它在波束图合成过程中起着重要的作用。在这项研究中,作者提出了一种基于傅立叶级数系数的封闭解来设计协方差矩阵。得到的协方差矩阵满足实际约束条件,即半正定性和一致元幂约束。它还提供与迭代方法相似的性能,同时需要更少的计算时间,并且相对于其他现有的封闭形式方法提供更好的均方误差。特征值分解还用于将可能得到的伪协方差矩阵(pseudo-covariance matrices, pseudo-CM)转换为协方差矩阵,这些伪协方差矩阵不能保证是正半定的。仿真结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An order insensitive optimal generalised sequential fusion estimation for stochastic uncertain multi-sensor systems with correlated noise Spatial Multiplexing in Near Field MIMO Channels with Reconfigurable Intelligent Surfaces An improved segmentation technique for multilevel thresholding of crop image using cuckoo search algorithm based on recursive minimum cross entropy Advances in image processing using machine learning techniques An unsupervised monocular image depth prediction algorithm using Fourier domain analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1