Prediction Method of RFID Antennas Detection Performance Based on Monte Carlo Analysis

Tianxiang Zhao, L. Kong, Xueguan Liu
{"title":"Prediction Method of RFID Antennas Detection Performance Based on Monte Carlo Analysis","authors":"Tianxiang Zhao, L. Kong, Xueguan Liu","doi":"10.1109/MAPE53743.2022.9935186","DOIUrl":null,"url":null,"abstract":"This paper presents a method to predict the detection performance of the RFID antenna based on Monte Carlo analysis. The specific designed reader antenna and the typical tags are modeled for electromagnetic simulations. The random numbers are generated by the Monte Carlo method to define the positions and orientations of the arrayed tags. Then, the transmission coefficients related to the different positions and orientations are developed to calculate the misreading probability of the reader antenna under different transmitting power levels. Finally, a passageway-type detection system has been built up to compare with the simulation results. The results show that the method proposed in this paper can better indicate the detection performance of an RFID antenna and provide a new prediction way for the design and application of RFID antennas.","PeriodicalId":442568,"journal":{"name":"2022 IEEE 9th International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications (MAPE)","volume":"12 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 9th International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications (MAPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MAPE53743.2022.9935186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a method to predict the detection performance of the RFID antenna based on Monte Carlo analysis. The specific designed reader antenna and the typical tags are modeled for electromagnetic simulations. The random numbers are generated by the Monte Carlo method to define the positions and orientations of the arrayed tags. Then, the transmission coefficients related to the different positions and orientations are developed to calculate the misreading probability of the reader antenna under different transmitting power levels. Finally, a passageway-type detection system has been built up to compare with the simulation results. The results show that the method proposed in this paper can better indicate the detection performance of an RFID antenna and provide a new prediction way for the design and application of RFID antennas.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于蒙特卡罗分析的RFID天线检测性能预测方法
提出了一种基于蒙特卡罗分析的RFID天线检测性能预测方法。对具体设计的阅读器天线和典型标签进行了电磁仿真。随机数由蒙特卡罗方法生成,用于定义数组标签的位置和方向。然后,推导出与不同位置和方向相关的传输系数,计算出不同发射功率水平下读写器天线的误读概率。最后,建立了通道型探测系统,并与仿真结果进行了比较。结果表明,本文提出的方法能较好地反映RFID天线的检测性能,为RFID天线的设计和应用提供了一种新的预测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EMI Reduction in Multilayer PCBs Using Planar Interdigital Slot Structures on the Reference Planes Spoof Surface Plasmon Polaritons-Fed Dual Polarized Patch Antenna Array A Design of Wideband Bandpass Three-Dimensional Frequency Selective Surface Research and Design of Broadband High Power Limiter A 24-44 GHz Highly Linear and Efficient mm-Wave Power Amplifier in 65-nm CMOS for 5G Phased Array Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1