Improving Classifier Fusion Using Particle Swarm Optimization

K. Veeramachaneni, Weizhong Yan, K. Goebel, L. Osadciw
{"title":"Improving Classifier Fusion Using Particle Swarm Optimization","authors":"K. Veeramachaneni, Weizhong Yan, K. Goebel, L. Osadciw","doi":"10.1109/MCDM.2007.369427","DOIUrl":null,"url":null,"abstract":"Both experimental and theoretical studies have proved that classifier fusion can be effective in improving overall classification performance. Classifier fusion can be performed on either score (raw classifier outputs) level or decision level. While tremendous research interests have been on score-level fusion, research work for decision-level fusion is sparse. This paper presents a particle swarm optimization based decision-level fusion scheme for optimizing classifier fusion performance. Multiple classifiers are fused at the decision level, and the particle swarm optimization algorithm finds optimal decision threshold for each classifier and the optimal fusion rule. Specifically, we present an optimal fusion strategy for fusing multiple classifiers to satisfy accuracy performance requirements, as applied to a real-world classification problem. The optimal decision fusion technique is found to perform significantly better than the conventional classifier fusion methods, i.e., traditional decision level fusion and averaged sum rule","PeriodicalId":306422,"journal":{"name":"2007 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making","volume":"36 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCDM.2007.369427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

Both experimental and theoretical studies have proved that classifier fusion can be effective in improving overall classification performance. Classifier fusion can be performed on either score (raw classifier outputs) level or decision level. While tremendous research interests have been on score-level fusion, research work for decision-level fusion is sparse. This paper presents a particle swarm optimization based decision-level fusion scheme for optimizing classifier fusion performance. Multiple classifiers are fused at the decision level, and the particle swarm optimization algorithm finds optimal decision threshold for each classifier and the optimal fusion rule. Specifically, we present an optimal fusion strategy for fusing multiple classifiers to satisfy accuracy performance requirements, as applied to a real-world classification problem. The optimal decision fusion technique is found to perform significantly better than the conventional classifier fusion methods, i.e., traditional decision level fusion and averaged sum rule
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于粒子群优化的分类器融合改进
实验和理论研究都证明了分类器融合可以有效地提高整体分类性能。分类器融合可以在得分(原始分类器输出)级别或决策级别上执行。虽然分数级融合的研究兴趣很大,但决策级融合的研究却很少。为了优化分类器的融合性能,提出了一种基于粒子群算法的决策级融合方案。在决策层融合多个分类器,粒子群算法为每个分类器找到最优决策阈值和最优融合规则。具体而言,我们提出了一种最优融合策略,用于融合多个分类器以满足精度性能要求,并应用于现实世界的分类问题。最优决策融合技术明显优于传统的分类器融合方法,即传统的决策级融合和平均和规则
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-criteria Set Partitioning for Portfolio Management: A Visual Interactive Method Exploring Robustness of Plans for Simulation-Based Course of Action Planning: A Framework and an Example On the Convergence of Multi-Objective Descent Algorithms Prediction of Stock Price Movements Based on Concept Map Information Interactive Utility Maximization in Multi-Objective Vehicle Routing Problems: A "Decision Maker in the Loop"-Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1