OPSE: Online Per-Scene Encoding for Adaptive Http Live Streaming

V. V. Menon, Hadi Amirpour, Christian Feldmann, M. Ghanbari, C. Timmerer
{"title":"OPSE: Online Per-Scene Encoding for Adaptive Http Live Streaming","authors":"V. V. Menon, Hadi Amirpour, Christian Feldmann, M. Ghanbari, C. Timmerer","doi":"10.1109/ICMEW56448.2022.9859502","DOIUrl":null,"url":null,"abstract":"In live streaming applications, typically a fixed set of bitrateresolution pairs (known as a bitrate ladder) is used during the entire streaming session in order to avoid the additional latency to find scene transitions and optimized bitrateresolution pairs for every video content. However, an optimized bitrate ladder per scene may result in (i) decreased storage or delivery costs or/and (ii) increased Quality of Experience (QoE). This paper introduces an Online Per-Scene Encoding (OPSE) scheme for adaptive HTTP live streaming applications. In this scheme, scene transitions and optimized bitrate-resolution pairs for every scene are predicted using Discrete Cosine Transform (DCT)-energy-based low-complexity spatial and temporal features. Experimental results show that, on average, OPSEyields bitrate savings of up to 48.88% in certain scenes to maintain the same VMAF, compared to the reference HTTP Live Streaming (HLS) bitrate ladder without any noticeable additional latency in streaming.","PeriodicalId":106759,"journal":{"name":"2022 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)","volume":"27 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMEW56448.2022.9859502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In live streaming applications, typically a fixed set of bitrateresolution pairs (known as a bitrate ladder) is used during the entire streaming session in order to avoid the additional latency to find scene transitions and optimized bitrateresolution pairs for every video content. However, an optimized bitrate ladder per scene may result in (i) decreased storage or delivery costs or/and (ii) increased Quality of Experience (QoE). This paper introduces an Online Per-Scene Encoding (OPSE) scheme for adaptive HTTP live streaming applications. In this scheme, scene transitions and optimized bitrate-resolution pairs for every scene are predicted using Discrete Cosine Transform (DCT)-energy-based low-complexity spatial and temporal features. Experimental results show that, on average, OPSEyields bitrate savings of up to 48.88% in certain scenes to maintain the same VMAF, compared to the reference HTTP Live Streaming (HLS) bitrate ladder without any noticeable additional latency in streaming.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
OPSE:自适应Http直播的在线逐场景编码
在实时流媒体应用中,通常在整个流媒体会话期间使用一组固定的比特率分辨率对(称为比特率阶梯),以避免为每个视频内容寻找场景转换和优化比特率分辨率对的额外延迟。然而,优化每个场景的比特率阶梯可能会导致(i)降低存储或传输成本或/和(ii)提高体验质量(QoE)。本文介绍了一种用于自适应HTTP直播应用的在线逐场景编码(OPSE)方案。在该方案中,使用基于能量的低复杂度空间和时间特征的离散余弦变换(DCT)预测场景转换和优化的比特率分辨率对。实验结果表明,与参考HTTP Live Streaming (HLS)比特率阶梯相比,平均而言,opse在某些场景中可以节省高达48.88%的比特率,以保持相同的VMAF,而在流媒体中没有任何明显的额外延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Emotional Quality Evaluation for Generated Music Based on Emotion Recognition Model Bottleneck Detection in Crowded Video Scenes Utilizing Lagrangian Motion Analysis Via Density and Arc Length Measures Efficient Topology Coding and Payload Partitioning Techniques for Neural Network Compression (NNC) Standard Exploring Multisensory Feedback for Virtual Reality Relaxation A Unified Video Summarization for Video Anomalies Through Deep Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1