{"title":"Design and Modeling of Smart Material Systems for High Voltage Insulation","authors":"Xuewei Zhang","doi":"10.1109/EIC.2018.8481056","DOIUrl":null,"url":null,"abstract":"Smart materials systems have been widely used to develop sensors, actuators and energy harvesters. This work is driven by the question about the possibility of strengthening electrical insulation systems via new designs based on smart materials/structures. Specifically, in this work, we seek for innovative solutions to partial discharge (PD) detection and mitigation inside gas or liquid insulated high voltage equipment by exploiting smart material systems' response to electric potential or current changes. The early-concept design includes a dielectric elastomer based actuator which has a spring that is relaxed when normal high voltage is applied to the elastomer (stretched). When partial discharge occurs, the voltage drop will cause the elastomer to contract, compress the spring, enlarge the insulation gap, and lower the electric field. The transient response of the dielectric elastomer actuator subject to PD voltage pulses is simulated. The results indicate that the systems can respond to PD in the direction toward PD suppression. This work also explores various settings to reveal the requirements on the material and system parameters for their use in high voltage insulation. This work presents a promising paradigm in the electrical insulation of high voltage equipment which combines sensing and actuating in the same material and features “responsive monitoring” by harnessing the electromechanical and/or electrochemical properties of smart materials.","PeriodicalId":184139,"journal":{"name":"2018 IEEE Electrical Insulation Conference (EIC)","volume":"83 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Electrical Insulation Conference (EIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIC.2018.8481056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Smart materials systems have been widely used to develop sensors, actuators and energy harvesters. This work is driven by the question about the possibility of strengthening electrical insulation systems via new designs based on smart materials/structures. Specifically, in this work, we seek for innovative solutions to partial discharge (PD) detection and mitigation inside gas or liquid insulated high voltage equipment by exploiting smart material systems' response to electric potential or current changes. The early-concept design includes a dielectric elastomer based actuator which has a spring that is relaxed when normal high voltage is applied to the elastomer (stretched). When partial discharge occurs, the voltage drop will cause the elastomer to contract, compress the spring, enlarge the insulation gap, and lower the electric field. The transient response of the dielectric elastomer actuator subject to PD voltage pulses is simulated. The results indicate that the systems can respond to PD in the direction toward PD suppression. This work also explores various settings to reveal the requirements on the material and system parameters for their use in high voltage insulation. This work presents a promising paradigm in the electrical insulation of high voltage equipment which combines sensing and actuating in the same material and features “responsive monitoring” by harnessing the electromechanical and/or electrochemical properties of smart materials.