Semantic Segmentation to Extract Coronary Arteries in Invasive Coronary Angiograms

Chen Zhao, Robert Bober, Haipeng Tang, Jinshan Tang, Minghao Dong, Chaoyang Zhang, Zhuo He, Michele Esposito, Zhihui Xu, Weihua Zhou
{"title":"Semantic Segmentation to Extract Coronary Arteries in Invasive Coronary Angiograms","authors":"Chen Zhao, Robert Bober, Haipeng Tang, Jinshan Tang, Minghao Dong, Chaoyang Zhang, Zhuo He, Michele Esposito, Zhihui Xu, Weihua Zhou","doi":"10.15377/2409-5761.2022.09.6","DOIUrl":null,"url":null,"abstract":"Accurate semantic segmentation of each coronary artery using invasive coronary angiography (ICA) is important for stenosis assessment and coronary artery disease (CAD) diagnosis. In this paper, we propose a multi-step semantic segmentation algorithm based on analyzing arterial segments extracted from ICAs. The proposed algorithm firstly extracts the entire arterial binary mask (binary vascular tree) using a deep learning-based method. Then we extract the centerline of the binary vascular tree and separate it into different arterial segments. Finally, by extracting the underlying arterial topology, position, and pixel features, we construct a powerful coronary artery segment classifier based on a support vector machine. Each arterial segment is classified into the left coronary artery (LCA), left anterior descending (LAD), and other types of arterial segments. The proposed method was tested on a dataset with 225 ICAs and achieved a mean accuracy of 70.33% for the multi-class artery classification and a mean intersection over union of 0.6868 for semantic segmentation of arteries. The experimental results show the effectiveness of the proposed algorithm, which provides impressive performance for analyzing the individual arteries in ICAs.","PeriodicalId":335387,"journal":{"name":"Journal of Advances in Applied & Computational Mathematics","volume":"21 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Applied & Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15377/2409-5761.2022.09.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Accurate semantic segmentation of each coronary artery using invasive coronary angiography (ICA) is important for stenosis assessment and coronary artery disease (CAD) diagnosis. In this paper, we propose a multi-step semantic segmentation algorithm based on analyzing arterial segments extracted from ICAs. The proposed algorithm firstly extracts the entire arterial binary mask (binary vascular tree) using a deep learning-based method. Then we extract the centerline of the binary vascular tree and separate it into different arterial segments. Finally, by extracting the underlying arterial topology, position, and pixel features, we construct a powerful coronary artery segment classifier based on a support vector machine. Each arterial segment is classified into the left coronary artery (LCA), left anterior descending (LAD), and other types of arterial segments. The proposed method was tested on a dataset with 225 ICAs and achieved a mean accuracy of 70.33% for the multi-class artery classification and a mean intersection over union of 0.6868 for semantic segmentation of arteries. The experimental results show the effectiveness of the proposed algorithm, which provides impressive performance for analyzing the individual arteries in ICAs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有创冠状动脉造影中冠状动脉的语义分割
有创冠状动脉造影(ICA)对每条冠状动脉进行准确的语义分割,对冠状动脉狭窄评估和冠状动脉疾病(CAD)诊断具有重要意义。本文提出了一种基于ica提取动脉段分析的多步语义分割算法。该算法首先采用基于深度学习的方法提取整个动脉二值掩膜(二值血管树);然后提取二值血管树的中心线,将其分割成不同的动脉段。最后,通过提取潜在的动脉拓扑、位置和像素特征,我们构建了一个基于支持向量机的强大的冠状动脉段分类器。每个动脉段分为左冠状动脉(LCA)、左前降支(LAD)和其他类型的动脉段。在225个ica数据集上对该方法进行了测试,多类动脉分类的平均准确率为70.33%,动脉语义分割的平均相交/联合准确率为0.6868。实验结果表明了该算法的有效性,对血管内单个动脉的分析具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the G'/G Expansion Method Applied to (2+1)-Dimensional Asymmetric-Nizhnik-Novikov-Veselov Equation A Conformable Inverse Problem with Constant Delay The Electromagnetic Scattering Problem by a Cylindrical Doubly-Connected Domain at Oblique Incidence: An Inverse Problem Numerical Investigation on Flow-Field Characteristics towards Removal of Free-Water by A Separator with Coalescing Plates The Unique Solution to the Differential Equations of the Fourth Order with Non-Homogeneous Boundary Conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1