{"title":"Brief Announcement: Simple and Local Independent Set Approximation","authors":"R. Boppana, M. Halldórsson, Dror Rawitz","doi":"10.1145/3212734.3212793","DOIUrl":null,"url":null,"abstract":"We bound the performance guarantees that follow from Turán-like bounds for unweighted and weighted independent sets in bounded-degree graphs. In particular, a randomized approach of Boppana forms a simple 1-round distributed algorithm, as well as a streaming and preemptive online algorithm. We show it gives a tight (Δ+1)/2-approximation in unweighted graphs of maximum degree Δ, which is best possible for 1-round distributed algorithms. For weighted graphs, it gives only a (Δ+1)-approximation, but a simple modification results in an asymptotic expected 0.529(Δ+1)-approximation.","PeriodicalId":198284,"journal":{"name":"Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3212734.3212793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We bound the performance guarantees that follow from Turán-like bounds for unweighted and weighted independent sets in bounded-degree graphs. In particular, a randomized approach of Boppana forms a simple 1-round distributed algorithm, as well as a streaming and preemptive online algorithm. We show it gives a tight (Δ+1)/2-approximation in unweighted graphs of maximum degree Δ, which is best possible for 1-round distributed algorithms. For weighted graphs, it gives only a (Δ+1)-approximation, but a simple modification results in an asymptotic expected 0.529(Δ+1)-approximation.