A signal subspace approach for speech enhancement

Y. Ephraim, H. V. Trees
{"title":"A signal subspace approach for speech enhancement","authors":"Y. Ephraim, H. V. Trees","doi":"10.1109/ICASSP.1993.319311","DOIUrl":null,"url":null,"abstract":"A perceptually based linear signal estimator for enhancing speech signals degraded by uncorrelated additive noise is developed. The estimator is designed by minimizing the signal distortion while maintaining the residual noise level below some given threshold. The estimator is shown to be a Wiener filter with adjustable input noise level. This level is determined by the threshold of the permissible residual noise. The estimator is implemented using the signal subspace approach. The vector space of the noisy signal is decomposed into a signal subspace and complementary orthogonal noise subspace. Estimation is performed from vectors in the signal subspace only, since the orthogonal subspace does not contain signal information. The proposed estimator is shown to be a refinement of a version of the spectral subtraction signal estimator. The latter estimator is shown to be asymptotically optimal for stationary signal and noise in the linear minimum mean square error sense.<<ETX>>","PeriodicalId":428449,"journal":{"name":"1993 IEEE International Conference on Acoustics, Speech, and Signal Processing","volume":"164 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1064","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1993 IEEE International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1993.319311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1064

Abstract

A perceptually based linear signal estimator for enhancing speech signals degraded by uncorrelated additive noise is developed. The estimator is designed by minimizing the signal distortion while maintaining the residual noise level below some given threshold. The estimator is shown to be a Wiener filter with adjustable input noise level. This level is determined by the threshold of the permissible residual noise. The estimator is implemented using the signal subspace approach. The vector space of the noisy signal is decomposed into a signal subspace and complementary orthogonal noise subspace. Estimation is performed from vectors in the signal subspace only, since the orthogonal subspace does not contain signal information. The proposed estimator is shown to be a refinement of a version of the spectral subtraction signal estimator. The latter estimator is shown to be asymptotically optimal for stationary signal and noise in the linear minimum mean square error sense.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
语音增强的一种信号子空间方法
提出了一种基于感知的线性信号估计器,用于增强被不相关加性噪声退化的语音信号。该估计器是通过最小化信号失真来设计的,同时将残余噪声水平保持在给定的阈值以下。该估计器是一个具有可调输入噪声电平的维纳滤波器。该电平由允许残余噪声的阈值决定。该估计器采用信号子空间方法实现。将噪声信号的向量空间分解为信号子空间和互补的正交噪声子空间。由于正交子空间不包含信号信息,因此仅从信号子空间中的向量进行估计。所提出的估计器被证明是谱减法信号估计器的一个改进版本。在线性最小均方误差意义下,后一种估计器对于平稳信号和噪声是渐近最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling, analysis, and compensation of quantization effects in M-band subband codecs Matched field source detection and localization in high noise environments: A novel reduced-rank signal processing approach Enhanced video compression with standardized bit stream syntax Formally correct translation of DSP algorithms specified in an asynchronous applicative language All-thru DSP provision, essential for the modern EE
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1