Dongxin Liu, Peng Wang, Tianshi Wang, T. Abdelzaher
{"title":"Self-Contrastive Learning based Semi-Supervised Radio Modulation Classification","authors":"Dongxin Liu, Peng Wang, Tianshi Wang, T. Abdelzaher","doi":"10.1109/MILCOM52596.2021.9652914","DOIUrl":null,"url":null,"abstract":"This paper presents a semi-supervised learning framework that is new in being designed for automatic modulation classification (AMC). By carefully utilizing unlabeled signal data with a self-supervised contrastive-learning pre-training step, our framework achieves higher performance given smaller amounts of labeled data, thereby largely reducing the labeling burden of deep learning. We evaluate the performance of our semi-supervised framework on a public dataset. The evaluation results demonstrate that our semi-supervised approach significantly outperforms supervised frameworks thereby substantially enhancing our ability to train deep neural networks for automatic modulation classification in a manner that leverages unlabeled data.","PeriodicalId":187645,"journal":{"name":"MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM)","volume":"646 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MILCOM52596.2021.9652914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
This paper presents a semi-supervised learning framework that is new in being designed for automatic modulation classification (AMC). By carefully utilizing unlabeled signal data with a self-supervised contrastive-learning pre-training step, our framework achieves higher performance given smaller amounts of labeled data, thereby largely reducing the labeling burden of deep learning. We evaluate the performance of our semi-supervised framework on a public dataset. The evaluation results demonstrate that our semi-supervised approach significantly outperforms supervised frameworks thereby substantially enhancing our ability to train deep neural networks for automatic modulation classification in a manner that leverages unlabeled data.