Text Mining for Personal Health Information on Twitter

Marina Sokolova, Yasser Jafer, D. Schramm
{"title":"Text Mining for Personal Health Information on Twitter","authors":"Marina Sokolova, Yasser Jafer, D. Schramm","doi":"10.1109/HISB.2012.37","DOIUrl":null,"url":null,"abstract":"With millions people discussing their Personal Health Information (PHI) online, there is a need for the development of tools that can extract and analyze such information. We introduce two semantic-based methods for mining PHI. One method uses WordNet as a source of health-related knowledge, another - terms of personal relations. Incorporating semantics gives a significant improvement in retrieval of text with PHI (paired t-test, P = 0.0001).","PeriodicalId":375089,"journal":{"name":"2012 IEEE Second International Conference on Healthcare Informatics, Imaging and Systems Biology","volume":"300 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Second International Conference on Healthcare Informatics, Imaging and Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HISB.2012.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

With millions people discussing their Personal Health Information (PHI) online, there is a need for the development of tools that can extract and analyze such information. We introduce two semantic-based methods for mining PHI. One method uses WordNet as a source of health-related knowledge, another - terms of personal relations. Incorporating semantics gives a significant improvement in retrieval of text with PHI (paired t-test, P = 0.0001).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Twitter上个人健康信息的文本挖掘
随着数百万人在线讨论他们的个人健康信息(PHI),需要开发能够提取和分析此类信息的工具。我们介绍了两种基于语义的PHI挖掘方法。一种方法是使用WordNet作为健康相关知识的来源,另一种方法是使用个人关系。结合语义可以显著改善使用PHI的文本检索(配对t检验,P = 0.0001)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancing Twitter Data Analysis with Simple Semantic Filtering: Example in Tracking Influenza-Like Illnesses Aggregated Indexing of Biomedical Time Series Data Temporal Analysis of Physicians' EHR Workflow during Outpatient Visits Does Domain Knowledge Matter for Assertion Annotation in Clinical Texts? A Randomized Response Model for Privacy-Preserving Data Dissemination
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1