{"title":"Delay Sensitivity Polynomials Based Design- Dependent Performance Monitors for Wide Operating Ranges","authors":"Rui-xin Shi, Liang Yang, Hao Wang","doi":"10.23919/DATE48585.2020.9116243","DOIUrl":null,"url":null,"abstract":"The downsizing of CMOS technology makes circuit performance more sensitive to on-chip parameter variations. Previous proposed design-dependent ring oscillator (DDRO) method provides an efficient way to monitor circuit performance at runtime. However, the linear delay sensitivity expression may be inadequate, especially in a wide range of operating conditions. To overcome it, a new design-dependent performance monitor (DDPM) method is proposed in this work, which formulates the delay sensitivity as high-order polynomials, makes it possible to accurately track the nonlinear timing behavior for wide operating ranges. A 28nm technology is used for design evaluation, and quite a low error rate is achieved in circuit performance monitoring comparison.","PeriodicalId":289525,"journal":{"name":"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/DATE48585.2020.9116243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The downsizing of CMOS technology makes circuit performance more sensitive to on-chip parameter variations. Previous proposed design-dependent ring oscillator (DDRO) method provides an efficient way to monitor circuit performance at runtime. However, the linear delay sensitivity expression may be inadequate, especially in a wide range of operating conditions. To overcome it, a new design-dependent performance monitor (DDPM) method is proposed in this work, which formulates the delay sensitivity as high-order polynomials, makes it possible to accurately track the nonlinear timing behavior for wide operating ranges. A 28nm technology is used for design evaluation, and quite a low error rate is achieved in circuit performance monitoring comparison.