Channel Decoding Based on Complex-valued Convolutional Neural Networks

Lun Li, Guanghui Yu, Jin Xu, LiGuang Li
{"title":"Channel Decoding Based on Complex-valued Convolutional Neural Networks","authors":"Lun Li, Guanghui Yu, Jin Xu, LiGuang Li","doi":"10.1109/6GSUMMIT49458.2020.9083899","DOIUrl":null,"url":null,"abstract":"Inspired by the recent outcomes in deep learning, we propose a novel decoding architecture which concatenates a complex-valued convolutional neural network (CCNN) with a belief propagation (BP) decoder for combating correlated noise in the channel. The CCNN can exploit the complex noise correlation and yield a more accurate estimation of the channel noise. Depressing the influence of channel noise via the proposed architecture, the BP decoder can obtain better decoding performances. Furthermore, extensive experiments are carried out to analyze and verify performances of the proposed framework.","PeriodicalId":385212,"journal":{"name":"2020 2nd 6G Wireless Summit (6G SUMMIT)","volume":"14 11","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 2nd 6G Wireless Summit (6G SUMMIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/6GSUMMIT49458.2020.9083899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Inspired by the recent outcomes in deep learning, we propose a novel decoding architecture which concatenates a complex-valued convolutional neural network (CCNN) with a belief propagation (BP) decoder for combating correlated noise in the channel. The CCNN can exploit the complex noise correlation and yield a more accurate estimation of the channel noise. Depressing the influence of channel noise via the proposed architecture, the BP decoder can obtain better decoding performances. Furthermore, extensive experiments are carried out to analyze and verify performances of the proposed framework.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于复值卷积神经网络的信道解码
受深度学习最新成果的启发,我们提出了一种新的解码架构,该架构将复值卷积神经网络(CCNN)与信念传播(BP)解码器连接起来,以对抗信道中的相关噪声。CCNN可以利用复杂的噪声相关性,对信道噪声进行更精确的估计。通过该结构抑制了信道噪声的影响,可以获得较好的译码性能。此外,进行了大量的实验来分析和验证所提出的框架的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards 6G: Evolution of Key Performance Indicators and Technology Trends Cellular and Wi-Fi in Unlicensed Spectrum: Competition leading to Convergence Design of a 20–80 GHz Down-Conversion Mixer for 5G Wireless Communication with 22nm CMOS A Measure of Personal Information in Mobile Data Ultra-Reliable Low-Latency Control Signaling in a Factory Environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1