Hanbaek Lyu, G. Menz, D. Needell, Christopher Strohmeier
{"title":"Applications of Online Nonnegative Matrix Factorization to Image and Time-Series Data","authors":"Hanbaek Lyu, G. Menz, D. Needell, Christopher Strohmeier","doi":"10.1109/ITA50056.2020.9245004","DOIUrl":null,"url":null,"abstract":"Online nonnegative matrix factorization (ONMF) is a matrix factorization technique in the online setting where data are acquired in a streaming fashion and the matrix factors are updated each time. This enables factor analysis to be performed concurrently with the arrival of new data samples. In this article, we demonstrate how one can use online nonnegative matrix factorization algorithms to learn joint dictionary atoms from an ensemble of correlated data sets. We propose a temporal dictionary learning scheme for time-series data sets, based on ONMF algorithms. We demonstrate our dictionary learning technique in the application contexts of historical temperature data, video frames, and color images.","PeriodicalId":137257,"journal":{"name":"2020 Information Theory and Applications Workshop (ITA)","volume":"4 9-10","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Information Theory and Applications Workshop (ITA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITA50056.2020.9245004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Online nonnegative matrix factorization (ONMF) is a matrix factorization technique in the online setting where data are acquired in a streaming fashion and the matrix factors are updated each time. This enables factor analysis to be performed concurrently with the arrival of new data samples. In this article, we demonstrate how one can use online nonnegative matrix factorization algorithms to learn joint dictionary atoms from an ensemble of correlated data sets. We propose a temporal dictionary learning scheme for time-series data sets, based on ONMF algorithms. We demonstrate our dictionary learning technique in the application contexts of historical temperature data, video frames, and color images.