Robust Single Image Reflection Removal Against Adversarial Attacks

Zhenbo Song, Zhenyuan Zhang, Kaihao Zhang, Wenhan Luo, Jason Zhaoxin Fan, Wenqi Ren, Jianfeng Lu
{"title":"Robust Single Image Reflection Removal Against Adversarial Attacks","authors":"Zhenbo Song, Zhenyuan Zhang, Kaihao Zhang, Wenhan Luo, Jason Zhaoxin Fan, Wenqi Ren, Jianfeng Lu","doi":"10.1109/CVPR52729.2023.02365","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of robust deep single-image reflection removal (SIRR) against adversarial attacks. Current deep learning based SIRR methods have shown significant performance degradation due to unnoticeable distortions and perturbations on input images. For a comprehensive robustness study, we first conduct diverse adversarial attacks specifically for the SIRR problem, i.e. towards different attacking targets and regions. Then we propose a robust SIRR model, which integrates the cross-scale attention module, the multi-scale fusion module, and the adversarial image discriminator. By exploiting the multi-scale mechanism, the model narrows the gap between features from clean and adversarial images. The image discriminator adaptively distinguishes clean or noisy inputs, and thus further gains reliable robustness. Extensive experiments on Nature, SIR2, and Real datasets demonstrate that our model remarkably improves the robustness of SIRR across disparate scenes.","PeriodicalId":376416,"journal":{"name":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"79 11","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR52729.2023.02365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper addresses the problem of robust deep single-image reflection removal (SIRR) against adversarial attacks. Current deep learning based SIRR methods have shown significant performance degradation due to unnoticeable distortions and perturbations on input images. For a comprehensive robustness study, we first conduct diverse adversarial attacks specifically for the SIRR problem, i.e. towards different attacking targets and regions. Then we propose a robust SIRR model, which integrates the cross-scale attention module, the multi-scale fusion module, and the adversarial image discriminator. By exploiting the multi-scale mechanism, the model narrows the gap between features from clean and adversarial images. The image discriminator adaptively distinguishes clean or noisy inputs, and thus further gains reliable robustness. Extensive experiments on Nature, SIR2, and Real datasets demonstrate that our model remarkably improves the robustness of SIRR across disparate scenes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针对对抗性攻击的鲁棒单图像反射去除
本文研究了对抗攻击的鲁棒深度单图像反射去除(SIRR)问题。目前基于深度学习的SIRR方法由于输入图像上不明显的扭曲和扰动而显示出显著的性能下降。为了进行全面的鲁棒性研究,我们首先针对SIRR问题进行了不同的对抗性攻击,即针对不同的攻击目标和区域。然后,我们提出了一个鲁棒的SIRR模型,该模型集成了跨尺度注意模块、多尺度融合模块和对抗图像鉴别器。通过利用多尺度机制,该模型缩小了干净图像和对抗图像之间的特征差距。图像鉴别器自适应区分干净或有噪声的输入,从而进一步获得可靠的鲁棒性。在Nature、SIR2和Real数据集上进行的大量实验表明,我们的模型显著提高了不同场景下SIRR的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
L-CoIns: Language-based Colorization With Instance Awareness Neural Texture Synthesis with Guided Correspondence LOGO: A Long-Form Video Dataset for Group Action Quality Assessment ERM-KTP: Knowledge-Level Machine Unlearning via Knowledge Transfer Target-referenced Reactive Grasping for Dynamic Objects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1