FlipTest

Emily Black, Samuel Yeom, Matt Fredrikson
{"title":"FlipTest","authors":"Emily Black, Samuel Yeom, Matt Fredrikson","doi":"10.1145/3351095.3372845","DOIUrl":null,"url":null,"abstract":"We present FlipTest, a black-box technique for uncovering discrimination in classifiers. FlipTest is motivated by the intuitive question: had an individual been of a different protected status, would the model have treated them differently? Rather than relying on causal information to answer this question, FlipTest leverages optimal transport to match individuals in different protected groups, creating similar pairs of in-distribution samples. We show how to use these instances to detect discrimination by constructing a flipset: the set of individuals whose classifier output changes post-translation, which corresponds to the set of people who may be harmed because of their group membership. To shed light on why the model treats a given subgroup differently, FlipTest produces a transparency report: a ranking of features that are most associated with the model's behavior on the flipset. Evaluating the approach on three case studies, we show that this provides a computationally inexpensive way to identify subgroups that may be harmed by model discrimination, including in cases where the model satisfies group fairness criteria.","PeriodicalId":377829,"journal":{"name":"Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3351095.3372845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We present FlipTest, a black-box technique for uncovering discrimination in classifiers. FlipTest is motivated by the intuitive question: had an individual been of a different protected status, would the model have treated them differently? Rather than relying on causal information to answer this question, FlipTest leverages optimal transport to match individuals in different protected groups, creating similar pairs of in-distribution samples. We show how to use these instances to detect discrimination by constructing a flipset: the set of individuals whose classifier output changes post-translation, which corresponds to the set of people who may be harmed because of their group membership. To shed light on why the model treats a given subgroup differently, FlipTest produces a transparency report: a ranking of features that are most associated with the model's behavior on the flipset. Evaluating the approach on three case studies, we show that this provides a computationally inexpensive way to identify subgroups that may be harmed by model discrimination, including in cases where the model satisfies group fairness criteria.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FlipTest
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dirichlet uncertainty wrappers for actionable algorithm accuracy accountability and auditability Algorithmic targeting of social policies: fairness, accuracy, and distributed governance Regulating transparency?: Facebook, Twitter and the German Network Enforcement Act CtrlZ.AI zine fair: critical perspectives Fairness, accountability, transparency in AI at scale: lessons from national programs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1