Machine Transliteration using Target-Language Grapheme and Phoneme: Multi-engine Transliteration Approach

Jong-Hoon Oh, Kiyotaka Uchimoto, Kentaro Torisawa
{"title":"Machine Transliteration using Target-Language Grapheme and Phoneme: Multi-engine Transliteration Approach","authors":"Jong-Hoon Oh, Kiyotaka Uchimoto, Kentaro Torisawa","doi":"10.3115/1699705.1699714","DOIUrl":null,"url":null,"abstract":"This paper describes our approach to \"NEWS 2009 Machine Transliteration Shared Task.\" We built multiple transliteration engines based on different combinations of two transliteration models and three machine learning algorithms. Then, the outputs from these transliteration engines were combined using re-ranking functions. Our method was applied to all language pairs in \"NEWS 2009 Machine Transliteration Shared Task.\" The official results of our standard runs were ranked the best for four language pairs and the second best for three language pairs.","PeriodicalId":262513,"journal":{"name":"NEWS@IJCNLP","volume":"35 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NEWS@IJCNLP","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/1699705.1699714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

This paper describes our approach to "NEWS 2009 Machine Transliteration Shared Task." We built multiple transliteration engines based on different combinations of two transliteration models and three machine learning algorithms. Then, the outputs from these transliteration engines were combined using re-ranking functions. Our method was applied to all language pairs in "NEWS 2009 Machine Transliteration Shared Task." The official results of our standard runs were ranked the best for four language pairs and the second best for three language pairs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用目标语字素和音素的机器音译:多引擎音译方法
本文描述了我们实现“NEWS 2009机器音译共享任务”的方法。我们基于两种音译模型和三种机器学习算法的不同组合构建了多个音译引擎。然后,使用重新排序功能将这些音译引擎的输出组合起来。我们的方法应用于“NEWS 2009机器音译共享任务”中的所有语言对。我们标准测试的官方结果是四种语言对排名第一,三种语言对排名第二。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Report of NEWS 2016 Machine Transliteration Shared Task Transliteration by Bidirectional Statistical Machine Translation Analysis and Robust Extraction of Changing Named Entities NEWS 2009 Machine Transliteration Shared Task System Description: Transliteration with Letter-to-Phoneme Technology Phonological Context Approximation and Homophone Treatment for NEWS 2009 English-Chinese Transliteration Shared Task
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1