Automatic Sensor Reconfiguration based on Adaptive Relevance Vector Machine for Uncertainty Reduction in Tomography Imaging

Daniel Ospina Acero, S. Chowdhury, F. Teixeira, Q. Marashdeh
{"title":"Automatic Sensor Reconfiguration based on Adaptive Relevance Vector Machine for Uncertainty Reduction in Tomography Imaging","authors":"Daniel Ospina Acero, S. Chowdhury, F. Teixeira, Q. Marashdeh","doi":"10.23919/USNC-URSI-NRSM.2019.8713113","DOIUrl":null,"url":null,"abstract":"We apply the Adaptive Relevance Vector Machine to automatically select the measurement set in a tomographic setting, from all the arrangements or combinations of the measuring elements, that yield the lowest level of uncertainty about the estimated results, while maintaining good image reconstruction. To illustrate the proposed method, we present simulation results derived from Electrical Capacitance Tomography.","PeriodicalId":142320,"journal":{"name":"2019 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM)","volume":"32 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/USNC-URSI-NRSM.2019.8713113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We apply the Adaptive Relevance Vector Machine to automatically select the measurement set in a tomographic setting, from all the arrangements or combinations of the measuring elements, that yield the lowest level of uncertainty about the estimated results, while maintaining good image reconstruction. To illustrate the proposed method, we present simulation results derived from Electrical Capacitance Tomography.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自适应相关向量机的层析成像传感器自动重构
我们应用自适应相关向量机从所有测量元素的排列或组合中自动选择层析成像设置中的测量集,从而产生对估计结果的最低不确定性,同时保持良好的图像重建。为了说明所提出的方法,我们给出了电容层析成像的仿真结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Single Layer Planar K-Band Monopulse Radar Receiver Proper Orthogonal Decomposition for Particle-in-Cell Simulations Dispersion and Field Control in a Metasurface-Implanted Waveguide 3D-Printed Frequency Scanning Slotted Waveguide Array with Wide Band Power Divider Composition of the Topside Ionosphere Determined from Plasma Wave Measurements Using the Radio Receiver Instrument on e-POP
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1