A crowdsourced system for user studies in information extraction

Z. Khojasteh-Ghamari
{"title":"A crowdsourced system for user studies in information extraction","authors":"Z. Khojasteh-Ghamari","doi":"10.1504/IJKESDP.2017.10010607","DOIUrl":null,"url":null,"abstract":"In this paper, from an entity linking (EL) system, we take a set of tweets, where some subsequence of words is annotated with possible meaning/entities and these entities are linked with several Wikipedia pages. We propose a model using crowdsourcing to disambiguate and decide about the accurate Wikipedia page that must be linked with a definite word/spot. We discuss about importance of crowdsourcing and compare different crowdsourcing systems and at the end, introduce crowdflower. We discuss about the crowdflower features in particular. Finally, we analyse output reports of the crowdflower and present a novel approach to select the reliable results. In summary, our observations show that reliable results have a confidence rate over 0.5.","PeriodicalId":347123,"journal":{"name":"Int. J. Knowl. Eng. Soft Data Paradigms","volume":"12 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Knowl. Eng. Soft Data Paradigms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJKESDP.2017.10010607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, from an entity linking (EL) system, we take a set of tweets, where some subsequence of words is annotated with possible meaning/entities and these entities are linked with several Wikipedia pages. We propose a model using crowdsourcing to disambiguate and decide about the accurate Wikipedia page that must be linked with a definite word/spot. We discuss about importance of crowdsourcing and compare different crowdsourcing systems and at the end, introduce crowdflower. We discuss about the crowdflower features in particular. Finally, we analyse output reports of the crowdflower and present a novel approach to select the reliable results. In summary, our observations show that reliable results have a confidence rate over 0.5.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用户研究信息提取的众包系统
在本文中,我们从实体链接(EL)系统中获取一组tweet,其中一些单词的子序列被注释了可能的含义/实体,并且这些实体被链接到几个维基百科页面。我们提出了一个模型,使用众包来消除歧义,并决定准确的维基百科页面,必须与一个明确的词/点链接。讨论了众包的重要性,比较了不同的众包系统,最后介绍了众花。我们特别讨论了众花的特性。最后,我们分析了众花的输出报告,并提出了一种新的方法来选择可靠的结果。综上所述,我们的观察表明,可靠结果的置信率大于0.5。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning combined features for automatic facial expression recognition An efficient similarity search using a combination between descriptors: a case of study in human face recognition Visual content summarisation for instructional videos using AdaBoost and SIFT Role-based access control in BagTrac application Fuzzy detection orange tree leaves diseases using a co-occurrence matrix-based K-nearest neighbours classifiers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1