Intelligent Process Control Following Industry 4.0 Trends

David A. Guerra-Zubiaga, Grayson McMichael, D. Segura-Velandia, Maria Aslam, Seung-Woo Yim, Zack Anderson, Y. Goh
{"title":"Intelligent Process Control Following Industry 4.0 Trends","authors":"David A. Guerra-Zubiaga, Grayson McMichael, D. Segura-Velandia, Maria Aslam, Seung-Woo Yim, Zack Anderson, Y. Goh","doi":"10.1115/imece2021-68686","DOIUrl":null,"url":null,"abstract":"\n Industry 4.0 is the next phase in the industrial revolution, and it is considered a key factor for advanced process control. This paper is focused on Industry 4.0 aspects to support better process control through a Manufacturing Execution System (MES). Some intelligent manufacturing decision systems require complex infrastructures that make advanced feedback control possible. The motivation of this paper is exploring the paradigms such as Industrial Internet of Things (IIoT), Big Data collection, Cloud Manufacturing (CM), and Machine Learning (ML) to provide better manufacturing support decisions in process control. This paper proposes a new approach at MES providing more intelligent process control through the integration of IIoT, CM, and ML. This research effort created a Process Control Training Bench (PCTB) as experimental infrastructure to implement a process control system incorporating Industry 4.0 trends and applying ML to analyze and predict anomalies.","PeriodicalId":113474,"journal":{"name":"Volume 2B: Advanced Manufacturing","volume":"75 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2B: Advanced Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2021-68686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Industry 4.0 is the next phase in the industrial revolution, and it is considered a key factor for advanced process control. This paper is focused on Industry 4.0 aspects to support better process control through a Manufacturing Execution System (MES). Some intelligent manufacturing decision systems require complex infrastructures that make advanced feedback control possible. The motivation of this paper is exploring the paradigms such as Industrial Internet of Things (IIoT), Big Data collection, Cloud Manufacturing (CM), and Machine Learning (ML) to provide better manufacturing support decisions in process control. This paper proposes a new approach at MES providing more intelligent process control through the integration of IIoT, CM, and ML. This research effort created a Process Control Training Bench (PCTB) as experimental infrastructure to implement a process control system incorporating Industry 4.0 trends and applying ML to analyze and predict anomalies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
智能过程控制顺应工业4.0趋势
工业4.0是工业革命的下一个阶段,它被认为是先进过程控制的关键因素。本文的重点是工业4.0方面,以支持通过制造执行系统(MES)更好的过程控制。一些智能制造决策系统需要复杂的基础设施来实现先进的反馈控制。本文的动机是探索工业物联网(IIoT)、大数据收集、云制造(CM)和机器学习(ML)等范式,以在过程控制中提供更好的制造支持决策。本文提出了一种新的MES方法,通过集成工业物联网、CM和ML来提供更智能的过程控制。这项研究工作创建了一个过程控制训练台(PCTB)作为实验基础设施,以实现一个结合工业4.0趋势的过程控制系统,并应用ML来分析和预测异常。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Methodology for Digital Twins of Product Lifecycle Supported by Digital Thread Thermal Analysis and Design of Self-Heating Molds Using Large-Scale Additive Manufacturing for Out-of-Autoclave Applications Conveyer-Less Matrix Assembly Layout Design to Maximize Labor Productivity and Footprint Usage A Comparative Numerical Investigation on Machining of Laminated and 3D Printed CFRP Composites Modelling of Surface Roughness in CO2 Laser Ablation of Aluminium-Coated Polymethyl Methacrylate (PMMA) Using Adaptive Neuro-Fuzzy Inference System (ANFIS)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1