FPGA Accelerated Online Boosting for Multi-target Tracking

Matthew Jacobsen, Pingfan Meng, Siddarth Sampangi, R. Kastner
{"title":"FPGA Accelerated Online Boosting for Multi-target Tracking","authors":"Matthew Jacobsen, Pingfan Meng, Siddarth Sampangi, R. Kastner","doi":"10.1109/FCCM.2014.50","DOIUrl":null,"url":null,"abstract":"Robust real time tracking of multiple targets is a requisite feature for many applications. Online boosting has become an effective approach for dealing with the variability in object appearance. This approach can adapt its classifier to changes in appearance at the cost of additional runtime computation. In this paper, we address the task of accelerating online boosting for multiple target tracking. We propose a FPGA hardware accelerated architecture to evaluate and train a boosted classifier in real time. A general purpose CPU based software-only implementation can track a single target at 17 frames per second (FPS). The FPGA accelerated design is capable of tracking a single target at 1160 FPS or 57 independent targets at 30 FPS. This represents a 68× speed up over software.","PeriodicalId":246162,"journal":{"name":"2014 IEEE 22nd Annual International Symposium on Field-Programmable Custom Computing Machines","volume":"6 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 22nd Annual International Symposium on Field-Programmable Custom Computing Machines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCCM.2014.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Robust real time tracking of multiple targets is a requisite feature for many applications. Online boosting has become an effective approach for dealing with the variability in object appearance. This approach can adapt its classifier to changes in appearance at the cost of additional runtime computation. In this paper, we address the task of accelerating online boosting for multiple target tracking. We propose a FPGA hardware accelerated architecture to evaluate and train a boosted classifier in real time. A general purpose CPU based software-only implementation can track a single target at 17 frames per second (FPS). The FPGA accelerated design is capable of tracking a single target at 1160 FPS or 57 independent targets at 30 FPS. This represents a 68× speed up over software.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FPGA加速多目标跟踪的在线增强
多目标的鲁棒实时跟踪是许多应用程序的必要功能。在线增强已成为处理物体外观变化的有效方法。这种方法可以使其分类器适应外观的变化,但代价是额外的运行时计算。本文主要研究多目标跟踪的在线加速问题。我们提出了一种FPGA硬件加速架构来实时评估和训练增强的分类器。基于CPU的通用软件实现可以以每秒17帧(FPS)的速度跟踪单个目标。FPGA加速设计能够以1160 FPS的速度跟踪单个目标或以30 FPS的速度跟踪57个独立目标。这代表了比软件快68倍的速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Architectural Approach to Characterizing and Eliminating Sources of Inefficiency in a Soft Processor Design High-Throughput Fixed-Point Object Detection on FPGAs A Hierarchical Memory Architecture with NoC Support for MPSoC on FPGAs System-Level Retiming and Pipelining Harmonica: An FPGA-Based Data Parallel Soft Core
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1