{"title":"Computational learning theory applied to discrete-time cellular neural networks","authors":"W. Utschick, J. Nossek","doi":"10.1109/CNNA.1994.381691","DOIUrl":null,"url":null,"abstract":"The theory of probably approximately correct (PAC) learning is applied to discrete-time cellular neural networks (DTCNNS). The Vapnik-Chervonenkis dimension of DTCNN is determined. Considering two different operation modes of the network, an upper bound of the sample size for a reliable generalization of DTCNN architecture is given.<<ETX>>","PeriodicalId":248898,"journal":{"name":"Proceedings of the Third IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94)","volume":"47 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.1994.381691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The theory of probably approximately correct (PAC) learning is applied to discrete-time cellular neural networks (DTCNNS). The Vapnik-Chervonenkis dimension of DTCNN is determined. Considering two different operation modes of the network, an upper bound of the sample size for a reliable generalization of DTCNN architecture is given.<>