Comparison of Face Recognition on RGB and Grayscale Color with Deep Learning in Forensic Science

Phornvipa Werukanjana, Prush Sa-nga-ngam, Norapattra Permpool
{"title":"Comparison of Face Recognition on RGB and Grayscale Color with Deep Learning in Forensic Science","authors":"Phornvipa Werukanjana, Prush Sa-nga-ngam, Norapattra Permpool","doi":"10.1145/3589572.3589586","DOIUrl":null,"url":null,"abstract":"In forensic science face recognition, we cannot request high-quality face images from sources, but we have face images from CCTV grayscale on the crime scene at night, face images in RGB mode from Web Cameras, etc. This research needs to find a satisfying method of face recognition in forensic science to identify the “Who's face?” at the request of a police investigator. The experiment uses Siamese neural network face recognition of both RGB and GRAY color modes to compare and show the performance of both color modes. The evaluation shows a confusion matrix, F1-score ROC/AUC, and a strong recommend with Likelihood ratio (LR) that supports court in evidence identification recommended by NIST and ENFSI.","PeriodicalId":296325,"journal":{"name":"Proceedings of the 2023 6th International Conference on Machine Vision and Applications","volume":"128 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 6th International Conference on Machine Vision and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3589572.3589586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In forensic science face recognition, we cannot request high-quality face images from sources, but we have face images from CCTV grayscale on the crime scene at night, face images in RGB mode from Web Cameras, etc. This research needs to find a satisfying method of face recognition in forensic science to identify the “Who's face?” at the request of a police investigator. The experiment uses Siamese neural network face recognition of both RGB and GRAY color modes to compare and show the performance of both color modes. The evaluation shows a confusion matrix, F1-score ROC/AUC, and a strong recommend with Likelihood ratio (LR) that supports court in evidence identification recommended by NIST and ENFSI.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的RGB和灰度颜色人脸识别在法医学中的比较
在法医学人脸识别中,我们无法从数据源中获取高质量的人脸图像,但我们可以从夜间犯罪现场的闭路电视灰度图像中获取人脸图像,从网络摄像机中获取RGB模式的人脸图像等。本研究需要在法医学中找到一种令人满意的人脸识别方法来识别“谁的脸?”应警方调查员的要求。实验采用RGB和GRAY两种颜色模式下的Siamese神经网络人脸识别来比较和展示两种颜色模式的性能。评估显示了一个混淆矩阵,f1分ROC/AUC,以及一个强有力的似然比(LR)推荐,支持法院在NIST和ENFSI推荐的证据鉴定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Object-Based Vehicle Color Recognition in Uncontrolled Environment Detection of Fibrillatory Episodes in Atrial Fibrillation Rhythms via Topology-informed Machine Learning Structure-Enhanced Translation from PET to CT Modality with Paired GANs Multi-temporal process quality prediction based on graph neural network On-Demand Multiclass Imaging for Sample Scarcity in Industrial Environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1