Solving Multi-Objective Optimization Problems using Differential Evolution Algorithm with Different Population Initialization Techniques

K. Devika, G. Jeyakumar
{"title":"Solving Multi-Objective Optimization Problems using Differential Evolution Algorithm with Different Population Initialization Techniques","authors":"K. Devika, G. Jeyakumar","doi":"10.1109/ICACCI.2018.8554861","DOIUrl":null,"url":null,"abstract":"The researchers of Evolutionary Computing (EC) community proposing new and different algorithmic strategies to tackle the increasing issues in handling optimization problems. As the number of objectives in an optimization problem increases the algorithmic complexity in solving the problem also increases. The way the initial population for an optimization problem generated is greatly affecting the performance of the Evolutionary Algorithms (EAs). This paper investigates the performance of Differential Evolution (DE) in solving Mutli-Objective optimization problems (MOOP) with two different population initialization (PI) techniques. The performance of different instances of DE is compared based on the solution accuracy obtained. The results obtained shows that DE shows different performance for different PI techniques.","PeriodicalId":376852,"journal":{"name":"2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI)","volume":"66 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACCI.2018.8554861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The researchers of Evolutionary Computing (EC) community proposing new and different algorithmic strategies to tackle the increasing issues in handling optimization problems. As the number of objectives in an optimization problem increases the algorithmic complexity in solving the problem also increases. The way the initial population for an optimization problem generated is greatly affecting the performance of the Evolutionary Algorithms (EAs). This paper investigates the performance of Differential Evolution (DE) in solving Mutli-Objective optimization problems (MOOP) with two different population initialization (PI) techniques. The performance of different instances of DE is compared based on the solution accuracy obtained. The results obtained shows that DE shows different performance for different PI techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于不同种群初始化技术的差分进化算法求解多目标优化问题
进化计算(EC)的研究人员提出了新的和不同的算法策略来解决处理优化问题中日益增加的问题。随着优化问题中目标数量的增加,求解问题的算法复杂度也随之增加。优化问题初始种群的生成方式对进化算法的性能有很大影响。本文研究了差分进化算法在求解两种不同种群初始化技术下的多目标优化问题(MOOP)中的性能。根据得到的解精度,比较了不同DE实例的性能。结果表明,对于不同的PI技术,DE表现出不同的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design of a Tactile Braille Cell Enhancing the Quality of Processes in Healthcare in India An Improved Firefly Algorithm for the Vehicle Routing Problem with Time Windows LoRa WanEvaluation for IoT Communications Scheduling Applications of DAGs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1