Classification of brain tumors by mining MRS spectrums using LabVIEW metabolite peak height scanning method

Jayalaxmi S. Gonal, V. Kohir
{"title":"Classification of brain tumors by mining MRS spectrums using LabVIEW metabolite peak height scanning method","authors":"Jayalaxmi S. Gonal, V. Kohir","doi":"10.1109/EESCO.2015.7253868","DOIUrl":null,"url":null,"abstract":"In this paper, we deal with the problem of classification of brain tumors as normal, benign or malignant using information from magnetic resonance spectroscopy (MRS) image to assist in clinical diagnosis. This paper proposes a novel approach to extract metabolite values represented in a graphical form in MR spectroscopy image. Metabolites like N-acetyl aspartate (NAA), Choline (Cho) and Creatine (Cr) are used to detect the brain tumor. The metabolite ratios NAA/Cho, Cho/Cr and NAA/Cr play most important role in deciding the tumor type. The proposed approach consists of several steps including preprocessing, metabolite peak height scanning and classification. Proposed system stores the metabolite values in dataset instead of storing MRS images; so reduces the image processing tasks and memory requirements. Further these metabolite values and ratios are fed to a k-NN classifier. Experimental results demonstrate the effectiveness of the proposed approach in classifying the brain tumors.","PeriodicalId":305584,"journal":{"name":"2015 International Conference on Electrical, Electronics, Signals, Communication and Optimization (EESCO)","volume":" 39","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Electrical, Electronics, Signals, Communication and Optimization (EESCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EESCO.2015.7253868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we deal with the problem of classification of brain tumors as normal, benign or malignant using information from magnetic resonance spectroscopy (MRS) image to assist in clinical diagnosis. This paper proposes a novel approach to extract metabolite values represented in a graphical form in MR spectroscopy image. Metabolites like N-acetyl aspartate (NAA), Choline (Cho) and Creatine (Cr) are used to detect the brain tumor. The metabolite ratios NAA/Cho, Cho/Cr and NAA/Cr play most important role in deciding the tumor type. The proposed approach consists of several steps including preprocessing, metabolite peak height scanning and classification. Proposed system stores the metabolite values in dataset instead of storing MRS images; so reduces the image processing tasks and memory requirements. Further these metabolite values and ratios are fed to a k-NN classifier. Experimental results demonstrate the effectiveness of the proposed approach in classifying the brain tumors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用LabVIEW代谢物峰高扫描法挖掘MRS谱对脑肿瘤进行分类
在本文中,我们处理的问题分类的正常,良性和恶性脑肿瘤的信息,利用磁共振波谱(MRS)图像,以协助临床诊断。本文提出了一种新的方法来提取代谢物值表示在图形形式的磁共振光谱图像。n -乙酰天冬氨酸(NAA)、胆碱(Cho)和肌酸(Cr)等代谢物被用来检测脑肿瘤。代谢产物比值NAA/Cho、Cho/Cr和NAA/Cr是决定肿瘤类型的最重要因素。该方法包括预处理、代谢峰高扫描和分类等几个步骤。该系统将代谢物值存储在数据集中,而不是存储MRS图像;从而减少了图像处理任务和对内存的要求。进一步,这些代谢物值和比率被输入到k-NN分类器。实验结果证明了该方法对脑肿瘤分类的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
IEEE copyright and consent form IEEE copyright and consent form Neuro-Genetic and CCM based biometrical authentication through side-view of human-face A feasibility analysis of decentralized solar power using RETScreen in Odisha Scanning tool for the detection of images embedded with malicious programs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1