Reinforcement learning with model sharing for multi-agent systems

Kao-Shing Hwang, Wei-Cheng Jiang, Yu-Jen Chen, Wei-Han Wang
{"title":"Reinforcement learning with model sharing for multi-agent systems","authors":"Kao-Shing Hwang, Wei-Cheng Jiang, Yu-Jen Chen, Wei-Han Wang","doi":"10.1109/ICSSE.2013.6614678","DOIUrl":null,"url":null,"abstract":"In this paper, a sharing method of model construction between multi-agents is presented to shorten the time of modeling. The sharing method allows the agents to share their knowledge in modeling. In the proposed method, the individual model held by each agent can be implemented with the heterogeneous structure such as decision tree. To decreasing the complexity of the sharing process, the proposed method executes model sharing between cooperative agents by means of the leaf nodes of trees instead of merging whole trees violently. The result of simulation in multi-agent cooperative domain illustrates that the proposed algorithm perform better than the one without sharing.","PeriodicalId":124317,"journal":{"name":"2013 International Conference on System Science and Engineering (ICSSE)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on System Science and Engineering (ICSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSE.2013.6614678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a sharing method of model construction between multi-agents is presented to shorten the time of modeling. The sharing method allows the agents to share their knowledge in modeling. In the proposed method, the individual model held by each agent can be implemented with the heterogeneous structure such as decision tree. To decreasing the complexity of the sharing process, the proposed method executes model sharing between cooperative agents by means of the leaf nodes of trees instead of merging whole trees violently. The result of simulation in multi-agent cooperative domain illustrates that the proposed algorithm perform better than the one without sharing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多智能体系统的模型共享强化学习
为了缩短建模时间,提出了一种多智能体之间共享模型构建的方法。共享方法允许agent在建模过程中共享他们的知识。该方法利用决策树等异构结构来实现每个agent所持有的独立模型。为了降低共享过程的复杂性,该方法采用树的叶子节点来实现协作智能体之间的模型共享,而不是采用暴力合并整棵树的方式。在多智能体协作领域的仿真结果表明,该算法的性能优于无共享算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Clustering of text collections based on PART neural network and similarity measure Target object announcement by synchronous blinking of a robot and an object Design and implementation of adaptive dynamic controllers for wheeled mobile robots Applying weighted mean aggregation to edge detection of images Adaptive dynamic surface control for fault-tolerant multi-robot systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1