Truncated multigrid versus pre-corrected FFT/AIM for bioelectromagnetics: When is O(N) better than O(NlogN)?

Kai Yang, F. Wei, A. Yılmaz
{"title":"Truncated multigrid versus pre-corrected FFT/AIM for bioelectromagnetics: When is O(N) better than O(NlogN)?","authors":"Kai Yang, F. Wei, A. Yılmaz","doi":"10.1109/CEM.2011.6047351","DOIUrl":null,"url":null,"abstract":"The effectiveness of multigrid and fast Fourier transform (FFT) based methods are investigated for accelerating the solution of volume integral equations encountered in bioelectromagnetics (BIOEM) analysis. The typical BIOEM simulation is in the mixed-frequency regime of analysis because the field variations in the simulation domain are dictated by a combination of the free space wavelength, geometrical features, and the wavelengths/skin depths in tissues. In this case, multigrid-based methods (when appropriately truncated at high-frequency levels) can achieve O(N) complexity that is asymptotically superior to the O(NlogN) complexity of FFT-based ones. Nevertheless, the constant in front of their asymptotic complexity estimate is larger and their accuracy-efficiency tradeoffs are different. Numerical experiments are performed to compare these methods and the results show that multigrid-based methods begin to outperform FFT-based ones for N∼103.","PeriodicalId":169588,"journal":{"name":"CEM'11 Computational Electromagnetics International Workshop","volume":"29 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CEM'11 Computational Electromagnetics International Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEM.2011.6047351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

The effectiveness of multigrid and fast Fourier transform (FFT) based methods are investigated for accelerating the solution of volume integral equations encountered in bioelectromagnetics (BIOEM) analysis. The typical BIOEM simulation is in the mixed-frequency regime of analysis because the field variations in the simulation domain are dictated by a combination of the free space wavelength, geometrical features, and the wavelengths/skin depths in tissues. In this case, multigrid-based methods (when appropriately truncated at high-frequency levels) can achieve O(N) complexity that is asymptotically superior to the O(NlogN) complexity of FFT-based ones. Nevertheless, the constant in front of their asymptotic complexity estimate is larger and their accuracy-efficiency tradeoffs are different. Numerical experiments are performed to compare these methods and the results show that multigrid-based methods begin to outperform FFT-based ones for N∼103.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物电磁学截断多重网格与预校正FFT/AIM: O(N)何时优于O(NlogN)?
研究了基于多重网格和快速傅里叶变换(FFT)的方法在加速生物电磁学(BIOEM)分析中遇到的体积积分方程解的有效性。典型的BIOEM模拟是在混合频率范围内进行分析,因为模拟域中的场变化是由自由空间波长、几何特征和组织中的波长/皮肤深度的组合决定的。在这种情况下,基于多网格的方法(当在高频电平上适当截断时)可以实现O(N)复杂度,这种复杂度渐近优于基于fft的方法的O(NlogN)复杂度。然而,它们的渐近复杂度估计前的常数较大,并且它们的精度-效率权衡不同。数值实验对这些方法进行了比较,结果表明基于多网格的方法在N ~ 103时开始优于基于fft的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hardware accelerated computing for electromagnetics applications Hybrid MPI/OpenMP parallelization of the explicit Volterra integral equation solver for multi-core computer architectures Divergence-Taylor-orthogonal basis functions for the discretization of second-kind surface integral equations in the method of moments A parallel sparse solver and its relation to graphs High-order vector bases for computational electromagnetics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1