{"title":"Prediction of priors for communication over arbitrarily varying channels","authors":"Y. Lomnitz, M. Feder","doi":"10.1109/ISIT.2011.6033949","DOIUrl":null,"url":null,"abstract":"We consider the problem of communicating over an unknown and arbitrarily varying channel, using feedback. This paper focuses on the problem of determining the input behavior, or more specifically, a prior which is used to randomly generate a codebook. We pose the problem of setting the prior as a sequential universal prediction problem using information theoretic abstractions of the communication channel. For the case where the channel is block-wise constant, we show it is possible to asymptotically approach the best rate that can be attained by any system using a fixed prior. For the case where the channel may change on each symbol, we combine a rateless coding scheme with a prior predictor and asymptotically approach the capacity of the average channel universally for every sequence of channels.","PeriodicalId":208375,"journal":{"name":"2011 IEEE International Symposium on Information Theory Proceedings","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Information Theory Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2011.6033949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
We consider the problem of communicating over an unknown and arbitrarily varying channel, using feedback. This paper focuses on the problem of determining the input behavior, or more specifically, a prior which is used to randomly generate a codebook. We pose the problem of setting the prior as a sequential universal prediction problem using information theoretic abstractions of the communication channel. For the case where the channel is block-wise constant, we show it is possible to asymptotically approach the best rate that can be attained by any system using a fixed prior. For the case where the channel may change on each symbol, we combine a rateless coding scheme with a prior predictor and asymptotically approach the capacity of the average channel universally for every sequence of channels.