Blind Source Separation with Wavelet Based ICA Technique Using Kurtosis

M. Y. Abbass, S. A. Abdelwahab, S. Diab, Bassiony. M. Salam, El-Sayed M. El-Rabaie, F. El-Samie, S. S. Haggag
{"title":"Blind Source Separation with Wavelet Based ICA Technique Using Kurtosis","authors":"M. Y. Abbass, S. A. Abdelwahab, S. Diab, Bassiony. M. Salam, El-Sayed M. El-Rabaie, F. El-Samie, S. S. Haggag","doi":"10.1109/ICCTA32607.2013.9529537","DOIUrl":null,"url":null,"abstract":"This paper deals with the problem of blind separation of digital images from mixtures. It proposes a wavelet -based Independent Component Analysis (ICA) method using Kurtosis for blind image source separation. In this method, the observations are transformed into an adequate representation using wavelet packet decomposition and a Kurtosis criterion. The simulation results of performance measures show a considerable improvement when compared to the FastICA. The Signal-to-Noise Ratio (SNR), Peak Signal-to-Noise Ratio (PSNR), Root Mean Square Error (RMSE) and Segmental Signal-to-Noise Ratio (SNRseg) are used to evaluate the quality of the separated images.","PeriodicalId":405465,"journal":{"name":"2013 23rd International Conference on Computer Theory and Applications (ICCTA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 23rd International Conference on Computer Theory and Applications (ICCTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCTA32607.2013.9529537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper deals with the problem of blind separation of digital images from mixtures. It proposes a wavelet -based Independent Component Analysis (ICA) method using Kurtosis for blind image source separation. In this method, the observations are transformed into an adequate representation using wavelet packet decomposition and a Kurtosis criterion. The simulation results of performance measures show a considerable improvement when compared to the FastICA. The Signal-to-Noise Ratio (SNR), Peak Signal-to-Noise Ratio (PSNR), Root Mean Square Error (RMSE) and Segmental Signal-to-Noise Ratio (SNRseg) are used to evaluate the quality of the separated images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于峰度分析的小波盲源分离
研究了数字图像与混合图像的盲分离问题。提出了一种基于小波独立分量分析(ICA)的峰度盲图像源分离方法。在这种方法中,使用小波包分解和峰度准则将观测值转换为适当的表示。性能测量的仿真结果表明,与FastICA相比,该方法有了相当大的改进。用信噪比(SNR)、峰值信噪比(PSNR)、均方根误差(RMSE)和片段信噪比(SNRseg)来评价分离图像的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
NC-OFDM Cognitive Radio Wireless Networks with Efficient LDPC Codes Identifying Learning Style Using Students Behavior in E-Learning Management Systems Based on JRIP Classifier Module Integrated Converter for Photovoltaic Applications with Different Control Strategies Processing of Corneal Images With A Cepstral Approach Feature Extraction for Trajectory Representation of Sign Language Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1