Eka Satria Maheswara, Ahmad Bustomi Zuhri, Dadang Iskandar Maulana
{"title":"Optimation Image Classification Pada Ikan Hiu Dengan Metode Convolutional Neural Network Dan Data Augmentasi","authors":"Eka Satria Maheswara, Ahmad Bustomi Zuhri, Dadang Iskandar Maulana","doi":"10.51179/tika.v7i1.993","DOIUrl":null,"url":null,"abstract":"Ikan Hiu merupakan ikan bertulang rawan yang banyak diburu karena mempunyai nilai ekonomi yang tinggi. Penangkapan dan perdagangan secara berlebihan mengakibatkan spesies ini terancam kepunahan dan sudah masuk pada beberapa kategori IUCN Red List. informasi tentang jenis-jenis hiu yang didaratkan di PPN Sungai liat Bangka masih sangat terbatas dikarenakan sulitnya identifikasi secara morfologi sehingga perlu dilakukan identifikasi menggunakan metode molekuler. oleh karena itu, peneliti menghasilkan program pengenalan citra pada ikan hiu menggunakan algoritma Convolutional Neural Network, yang merupakan kegiatan konvolusi dengan menggabungkan beberapa lapisan persiapan, dengan memanfaatkan beberapa komponen yang bergerak sama dan dimotivasi oleh sistem sensorik biologis. Gambar ikan hiu yang digunakan adalah basking, blacktip, blue, bull, hammerhead, lemon, mako, nurse, sand tiger, dan thresher. Implementasi pengenalan citra ikan hiu dilakukan dengan memakai 2 model pengujian yaitu model Sequential dan model on top VGG16 yang berjalan di aplikasi Google Collaboratory, dan Keras. Data pengujian pada penelitian ini adalah 1089 citra data latih dan 1073 citra data uji yang menghasilkan nilai evaluasi dengan nilai akurasi 86,58% dan nilai loss 0,701 pada model Sequential dan nilai akurasi 91,80% dan nilai loss 0,0355 pada model on top VGG16.","PeriodicalId":141239,"journal":{"name":"Jurnal TIKA","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal TIKA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51179/tika.v7i1.993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Ikan Hiu merupakan ikan bertulang rawan yang banyak diburu karena mempunyai nilai ekonomi yang tinggi. Penangkapan dan perdagangan secara berlebihan mengakibatkan spesies ini terancam kepunahan dan sudah masuk pada beberapa kategori IUCN Red List. informasi tentang jenis-jenis hiu yang didaratkan di PPN Sungai liat Bangka masih sangat terbatas dikarenakan sulitnya identifikasi secara morfologi sehingga perlu dilakukan identifikasi menggunakan metode molekuler. oleh karena itu, peneliti menghasilkan program pengenalan citra pada ikan hiu menggunakan algoritma Convolutional Neural Network, yang merupakan kegiatan konvolusi dengan menggabungkan beberapa lapisan persiapan, dengan memanfaatkan beberapa komponen yang bergerak sama dan dimotivasi oleh sistem sensorik biologis. Gambar ikan hiu yang digunakan adalah basking, blacktip, blue, bull, hammerhead, lemon, mako, nurse, sand tiger, dan thresher. Implementasi pengenalan citra ikan hiu dilakukan dengan memakai 2 model pengujian yaitu model Sequential dan model on top VGG16 yang berjalan di aplikasi Google Collaboratory, dan Keras. Data pengujian pada penelitian ini adalah 1089 citra data latih dan 1073 citra data uji yang menghasilkan nilai evaluasi dengan nilai akurasi 86,58% dan nilai loss 0,701 pada model Sequential dan nilai akurasi 91,80% dan nilai loss 0,0355 pada model on top VGG16.