Data hiding using lifting scheme and genetic algorithm

Geeta Kasana, Kulbir Singh, S. S. Bhatia
{"title":"Data hiding using lifting scheme and genetic algorithm","authors":"Geeta Kasana, Kulbir Singh, S. S. Bhatia","doi":"10.1504/IJICS.2017.10008444","DOIUrl":null,"url":null,"abstract":"In this paper, data hiding algorithm by using lifting scheme and genetic algorithm (GA) has been proposed. Arnold transform has been used to scramble the secret image to secure the extraction of secret image. Lifting scheme is applied on the cover image to get the wavelet subbands. In this algorithm, scrambled secret image is embedded into significant wavelet coefficients of subbands of cover image. Scaling factor (SF) parameter is used in embedding and extracting process of the proposed algorithm and GA is used to optimise this parameter. This optimisation is used to maximise the value of peak signal to noise ratio (PSNR) of composite image and similarity index modulation (SIM) of extracted secret image. Experimental results reveal that proposed algorithm provides high embedding capacity and better quality of composite images than the existing data hiding techniques. To show the effectiveness of the proposed algorithm, statistical tests have been performed to show that the imperceptibility is maintained.","PeriodicalId":164016,"journal":{"name":"Int. J. Inf. Comput. Secur.","volume":"13 1-4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Inf. Comput. Secur.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJICS.2017.10008444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, data hiding algorithm by using lifting scheme and genetic algorithm (GA) has been proposed. Arnold transform has been used to scramble the secret image to secure the extraction of secret image. Lifting scheme is applied on the cover image to get the wavelet subbands. In this algorithm, scrambled secret image is embedded into significant wavelet coefficients of subbands of cover image. Scaling factor (SF) parameter is used in embedding and extracting process of the proposed algorithm and GA is used to optimise this parameter. This optimisation is used to maximise the value of peak signal to noise ratio (PSNR) of composite image and similarity index modulation (SIM) of extracted secret image. Experimental results reveal that proposed algorithm provides high embedding capacity and better quality of composite images than the existing data hiding techniques. To show the effectiveness of the proposed algorithm, statistical tests have been performed to show that the imperceptibility is maintained.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用提升方案和遗传算法进行数据隐藏
提出了一种基于提升方案和遗传算法的数据隐藏算法。利用阿诺德变换对秘密图像进行置乱,保证了秘密图像的提取。对封面图像采用提升方案得到小波子带。该算法将加密后的秘密图像嵌入到覆盖图像子带的有效小波系数中。在该算法的嵌入和提取过程中使用比例因子参数,并使用遗传算法对该参数进行优化。利用这种优化方法最大限度地提高合成图像的峰值信噪比(PSNR)和提取的秘密图像的相似指数调制(SIM)。实验结果表明,与现有的数据隐藏技术相比,该算法具有较高的嵌入容量和更好的合成图像质量。为了证明所提出算法的有效性,进行了统计测试,以表明保持了不可感知性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vulnerability discovery modelling: a general framework Modelling and visualising SSH brute force attack behaviours through a hybrid learning framework Empirical risk assessment of attack graphs using time to compromise framework Fault-based testing for discovering SQL injection vulnerabilities in web applications Leveraging Intel SGX to enable trusted and privacy preserving membership service in distributed ledgers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1