Robust centroid determination of noisy data using FCM and domain specific partitioning

M. Alexiuk, N. Pizzi
{"title":"Robust centroid determination of noisy data using FCM and domain specific partitioning","authors":"M. Alexiuk, N. Pizzi","doi":"10.1109/NAFIPS.2003.1226788","DOIUrl":null,"url":null,"abstract":"Functional magnetic resonance imaging (FMRI) datasets are composed of spatial and temporal features and contain unique noise degradation. We propose a feature partition along noise-specific domains to fit the fuzzy c-means (FCM) algorithm to this problem. Each domain will consist of unique features and use a domain-specific metric. The distance term in the FCM membership update equation is replaced by a weighted sum of domain distances. Exploiting conceptual cleavage of the sample features invites intuitive remedial action in the form of robust metrics, decreased weighting, or selective enhancement processing. Robust centroids are determined by suppressing the role of feature subsets contaminated by significant noise levels or intractable noise types. This paper examines synthetic datasets of FMRI activations and shows that a specialized FCM algorithm determines higher accuracy centroids in the presence of high noise levels.","PeriodicalId":153530,"journal":{"name":"22nd International Conference of the North American Fuzzy Information Processing Society, NAFIPS 2003","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd International Conference of the North American Fuzzy Information Processing Society, NAFIPS 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.2003.1226788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Functional magnetic resonance imaging (FMRI) datasets are composed of spatial and temporal features and contain unique noise degradation. We propose a feature partition along noise-specific domains to fit the fuzzy c-means (FCM) algorithm to this problem. Each domain will consist of unique features and use a domain-specific metric. The distance term in the FCM membership update equation is replaced by a weighted sum of domain distances. Exploiting conceptual cleavage of the sample features invites intuitive remedial action in the form of robust metrics, decreased weighting, or selective enhancement processing. Robust centroids are determined by suppressing the role of feature subsets contaminated by significant noise levels or intractable noise types. This paper examines synthetic datasets of FMRI activations and shows that a specialized FCM algorithm determines higher accuracy centroids in the presence of high noise levels.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用FCM和域特定划分的噪声数据的鲁棒质心确定
功能磁共振成像(FMRI)数据集由空间和时间特征组成,并且包含独特的噪声退化。我们提出了一个沿噪声特定域的特征划分,以适应模糊c均值(FCM)算法。每个领域将由独特的特性组成,并使用特定于领域的度量。将FCM隶属度更新方程中的距离项替换为域距离的加权和。利用样本特征的概念分裂需要直观的补救行动,以鲁棒度量,减少权重或选择性增强处理的形式。鲁棒质心是通过抑制被显著噪声水平或难以处理的噪声类型污染的特征子集的作用来确定的。本文研究了FMRI激活的合成数据集,并表明在存在高噪声水平的情况下,专门的FCM算法确定了更高精度的质心。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fuzzy-rough nearest-neighbor classification approach Fault detection and diagnosis in turbine engines using fuzzy logic How the number of measured dimensions affects fuzzy causal measures of vitamin therapy for hyperhomocysteinemia in stroke patients The fuzzy rough approximation decomposability Fuzzy-neuro system for bridge health monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1