Performance of Caffe on QCT Deep Learning Reference Architecture — A Preliminary Case Study

V. Shankar, Stephen Chang
{"title":"Performance of Caffe on QCT Deep Learning Reference Architecture — A Preliminary Case Study","authors":"V. Shankar, Stephen Chang","doi":"10.1109/CSCloud.2017.49","DOIUrl":null,"url":null,"abstract":"Deep learning is a sub-set of machine learning practice employing models based on various learning network architectures and algorithms in the field of artificial intelligence. Businesses planning to adopt a deep learning solution should comprehend a set of complex choices in hardware, software, configuration and optimizations to setup a functional deep learning solution. This paper will describe the reference architecture built on Intel Knights Landing processor and omni-path interconnection. We provide a simplified guide to deploy, configure and optimize deep learning solutions based on an array of compute, storage, networking and software components offered by Quanta Cloud Technology. The performance data is presented and it shows good scaling and accuracy on processing the data from IMAGENET.","PeriodicalId":436299,"journal":{"name":"2017 IEEE 4th International Conference on Cyber Security and Cloud Computing (CSCloud)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 4th International Conference on Cyber Security and Cloud Computing (CSCloud)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCloud.2017.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Deep learning is a sub-set of machine learning practice employing models based on various learning network architectures and algorithms in the field of artificial intelligence. Businesses planning to adopt a deep learning solution should comprehend a set of complex choices in hardware, software, configuration and optimizations to setup a functional deep learning solution. This paper will describe the reference architecture built on Intel Knights Landing processor and omni-path interconnection. We provide a simplified guide to deploy, configure and optimize deep learning solutions based on an array of compute, storage, networking and software components offered by Quanta Cloud Technology. The performance data is presented and it shows good scaling and accuracy on processing the data from IMAGENET.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Caffe在QCT深度学习参考架构上的性能——初步案例研究
深度学习是机器学习实践的一个子集,它采用基于人工智能领域各种学习网络架构和算法的模型。计划采用深度学习解决方案的企业应该了解硬件、软件、配置和优化方面的一系列复杂选择,以建立一个功能性的深度学习解决方案。本文将描述基于Intel Knights Landing处理器和全路径互连的参考体系结构。基于广达云技术提供的一系列计算、存储、网络和软件组件,我们提供了一份简化的深度学习解决方案部署、配置和优化指南。给出了性能数据,在处理IMAGENET数据时显示出良好的可伸缩性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Framework for the Information Classification in ISO 27005 Standard Finding the Best Box-Cox Transformation in Big Data with Meta-Model Learning: A Case Study on QCT Developer Cloud Distributed Shuffle Index in the Cloud: Implementation and Evaluation Performance Study of Ceph Storage with Intel Cache Acceleration Software: Decoupling Hadoop MapReduce and HDFS over Ceph Storage Advanced Fully Homomorphic Encryption Scheme Over Real Numbers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1