Making Data Stream Classification Tree-Based Ensembles Lighter

V. G. T. D. Costa, S. M. Mastelini, A. Carvalho, Sylvio Barbon Junior
{"title":"Making Data Stream Classification Tree-Based Ensembles Lighter","authors":"V. G. T. D. Costa, S. M. Mastelini, A. Carvalho, Sylvio Barbon Junior","doi":"10.1109/BRACIS.2018.00089","DOIUrl":null,"url":null,"abstract":"Recently, several classification algorithms capable of dealing with potentially infinite data streams have been proposed. One of the main challenges of this task is to continuously update predictive models to address concept drifts without compromise their predictive performance. Moreover, the classification algorithm used must be able to efficiently deal with processing time and memory limitations. In the data stream mining literature, ensemble-based classification algorithms are a good alternative to satisfy the previous requirements. These algorithms combine multiple weak learner algorithms, e.g., the Very Fast Decision Tree (VFDT), to create a model with higher predictive performance. However, the memory costs of each weak learner are stacked in an ensemble, compromising the limited space requirements. To manage the trade-off between accuracy, memory space, and processing time, this paper proposes to use the Strict VFDT (SVFDT) algorithm as an alternative weak learner for ensemble solutions which is capable of reducing memory consumption without harming the predictive performance. This paper experimentally compares two traditional and three state-of-the-art ensembles using as weak learners the VFDT and SVFDT across thirteen benchmark datasets. According to the experimental results, the proposed algorithm can obtain a similar predictive performance with a significant economy of memory space.","PeriodicalId":405190,"journal":{"name":"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)","volume":"71 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BRACIS.2018.00089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Recently, several classification algorithms capable of dealing with potentially infinite data streams have been proposed. One of the main challenges of this task is to continuously update predictive models to address concept drifts without compromise their predictive performance. Moreover, the classification algorithm used must be able to efficiently deal with processing time and memory limitations. In the data stream mining literature, ensemble-based classification algorithms are a good alternative to satisfy the previous requirements. These algorithms combine multiple weak learner algorithms, e.g., the Very Fast Decision Tree (VFDT), to create a model with higher predictive performance. However, the memory costs of each weak learner are stacked in an ensemble, compromising the limited space requirements. To manage the trade-off between accuracy, memory space, and processing time, this paper proposes to use the Strict VFDT (SVFDT) algorithm as an alternative weak learner for ensemble solutions which is capable of reducing memory consumption without harming the predictive performance. This paper experimentally compares two traditional and three state-of-the-art ensembles using as weak learners the VFDT and SVFDT across thirteen benchmark datasets. According to the experimental results, the proposed algorithm can obtain a similar predictive performance with a significant economy of memory space.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使基于数据流分类树的集成更轻
最近,已经提出了几种能够处理潜在无限数据流的分类算法。该任务的主要挑战之一是不断更新预测模型以解决概念漂移而不影响其预测性能。此外,所使用的分类算法必须能够有效地处理处理时间和内存限制。在数据流挖掘文献中,基于集成的分类算法是满足上述要求的一个很好的替代方案。这些算法结合了多种弱学习算法,如快速决策树(VFDT),以创建具有更高预测性能的模型。然而,每个弱学习器的记忆成本是堆叠在一个集合中,损害了有限的空间要求。为了处理精度、内存空间和处理时间之间的权衡,本文提出使用严格VFDT (SVFDT)算法作为集成解决方案的替代弱学习器,它能够在不损害预测性能的情况下减少内存消耗。本文在13个基准数据集上实验比较了两种传统集成和三种最先进集成作为弱学习器的VFDT和SVFDT。实验结果表明,该算法在节省内存空间的前提下,可以获得相似的预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring the Data Using Extended Association Rule Network SPt: A Text Mining Process to Extract Relevant Areas from SW Documents to Exploratory Tests Gene Essentiality Prediction Using Topological Features From Metabolic Networks Bio-Inspired and Heuristic Methods Applied to a Benchmark of the Task Scheduling Problem A New Genetic Algorithm-Based Pruning Approach for Optimum-Path Forest
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1