Using genetic programming for the induction of oblique decision trees

A. Shali, M. Kangavari, B. Bina
{"title":"Using genetic programming for the induction of oblique decision trees","authors":"A. Shali, M. Kangavari, B. Bina","doi":"10.1109/ICMLA.2007.66","DOIUrl":null,"url":null,"abstract":"In this paper, we present a genetically induced oblique decision tree algorithm. In traditional decision tree, each internal node has a testing criterion involving a single attribute. Oblique decision tree allows testing criterion to consist of more than one attribute. Here we use genetic programming to evolve and find an optimal testing criterion in each internal node for the set of samples at that node. This testing criterion is the characteristic function of a relation over existing attributes. We present the algorithm for construction of the oblique decision tree. We also compare the results of our proposed oblique decision tree with the one of C4.5 algorithm.","PeriodicalId":448863,"journal":{"name":"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)","volume":"626 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2007.66","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

In this paper, we present a genetically induced oblique decision tree algorithm. In traditional decision tree, each internal node has a testing criterion involving a single attribute. Oblique decision tree allows testing criterion to consist of more than one attribute. Here we use genetic programming to evolve and find an optimal testing criterion in each internal node for the set of samples at that node. This testing criterion is the characteristic function of a relation over existing attributes. We present the algorithm for construction of the oblique decision tree. We also compare the results of our proposed oblique decision tree with the one of C4.5 algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用遗传规划进行斜决策树的归纳
本文提出了一种遗传诱导倾斜决策树算法。在传统的决策树中,每个内部节点都有一个涉及单个属性的测试标准。倾斜决策树允许测试标准由多个属性组成。在这里,我们使用遗传编程来进化并在该节点的样本集的每个内部节点中找到最优测试标准。这个测试标准是现有属性上的关系的特征函数。提出了斜决策树的构造算法。我们还将所提出的斜决策树的结果与C4.5算法的结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SVMotif: A Machine Learning Motif Algorithm A Statistical Algorithm to Discover Knowledge in Medical Data Sources A New Ant Evolution Algorithm to Resolve TSP Problem Tracking recurrent concept drift in streaming data using ensemble classifiers Model evaluation for prognostics: estimating cost saving for the end users
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1