Nonintrusive data-based learning of a switched control heating system using POD, DMD and ANN

IF 1 4区 工程技术 Q4 MECHANICS Comptes Rendus Mecanique Pub Date : 2019-11-01 DOI:10.1016/j.crme.2019.11.005
Tarik Fahlaoui, Florian De Vuyst
{"title":"Nonintrusive data-based learning of a switched control heating system using POD, DMD and ANN","authors":"Tarik Fahlaoui,&nbsp;Florian De Vuyst","doi":"10.1016/j.crme.2019.11.005","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of this work is to derive an accurate model of two-dimensional switched control heating system from data generated by a Finite Element solver. The nonintrusive approach should be able to capture both temperature fields, dynamics and the underlying switching control rule. To achieve this goal, the algorithm proposed in this paper will make use of three main ingredients: proper orthogonal decomposition (POD), dynamic mode decomposition (DMD) and artificial neural networks (ANN). Some numerical results will be presented and compared to the high-fidelity numerical solutions to demonstrate the capability of the method to reproduce the dynamics.</p></div>","PeriodicalId":50997,"journal":{"name":"Comptes Rendus Mecanique","volume":"347 11","pages":"Pages 793-805"},"PeriodicalIF":1.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.crme.2019.11.005","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Mecanique","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1631072119301767","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 1

Abstract

The aim of this work is to derive an accurate model of two-dimensional switched control heating system from data generated by a Finite Element solver. The nonintrusive approach should be able to capture both temperature fields, dynamics and the underlying switching control rule. To achieve this goal, the algorithm proposed in this paper will make use of three main ingredients: proper orthogonal decomposition (POD), dynamic mode decomposition (DMD) and artificial neural networks (ANN). Some numerical results will be presented and compared to the high-fidelity numerical solutions to demonstrate the capability of the method to reproduce the dynamics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于POD、DMD和ANN的开关控制加热系统非侵入式数据学习
本工作的目的是从有限元求解器生成的数据中推导出二维开关控制加热系统的精确模型。非侵入式方法应该能够捕获温度场、动力学和潜在的开关控制规则。为了实现这一目标,本文提出的算法将利用三种主要成分:固有正交分解(POD)、动态模态分解(DMD)和人工神经网络(ANN)。将给出一些数值结果,并与高保真数值解进行比较,以证明该方法能够再现动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Comptes Rendus Mecanique
Comptes Rendus Mecanique 物理-力学
CiteScore
1.40
自引率
0.00%
发文量
0
审稿时长
12 months
期刊介绍: The Comptes rendus - Mécanique cover all fields of the discipline: Logic, Combinatorics, Number Theory, Group Theory, Mathematical Analysis, (Partial) Differential Equations, Geometry, Topology, Dynamical systems, Mathematical Physics, Mathematical Problems in Mechanics, Signal Theory, Mathematical Economics, … The journal publishes original and high-quality research articles. These can be in either in English or in French, with an abstract in both languages. An abridged version of the main text in the second language may also be included.
期刊最新文献
Vortex-induced vibration of a square cylinder in wind tunnel Large-scale smooth plastic topology optimization using domain decomposition The Meyer’s estimate of solutions to Zaremba problem for second-order elliptic equations in divergent form 2D model simulating the hydro-rheological behavior of leather during convective drying Modal energetic analysis and dynamic response of worm gear drives with a new developed dynamic model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1