Randomized Concurrent Set Union and Generalized Wake-Up

S. Jayanti, R. Tarjan, Enric Boix-Adserà
{"title":"Randomized Concurrent Set Union and Generalized Wake-Up","authors":"S. Jayanti, R. Tarjan, Enric Boix-Adserà","doi":"10.1145/3293611.3331593","DOIUrl":null,"url":null,"abstract":"We consider the disjoint set union problem in the asynchronous shared memory multiprocessor computation model. We design a randomized algorithm that performs at most O(log n) work per operation (with high probability), and performs at most O(m #8226; (α(n, m/(np)) + log(np/m + 1)) total work in expectation for a problem instance with m operations on n elements solved by p processes. Our algorithm is the first to have work bounds that grow sublinearly with p against an adversarial scheduler. We use Jayanti's Wake Up problem and our newly defined Generalized Wake Up problem to prove several lower bounds on concurrent set union. We show an Ω(log min {n,p}) expected work lower bound on the cost of any single operation on a set union algorithm. This shows that our single-operation upper bound is optimal across all algorithms when p = nΩ(1). Furthermore, we identify a class of \"symmetric algorithms'' that captures the complexities of all the known algorithms for the disjoint set union problem, and prove an Ω(m•(α(n, m(np)) + log(np/m + 1))) expected total work lower bound on algorithms of this class, thereby showing that our algorithm has optimal total work complexity for this class. Finally, we prove that any randomized algorithm, symmetric or not, cannot breach an Ω(m •(α(n, m/n) + log log(np/m + 1))) expected total work lower bound.","PeriodicalId":153766,"journal":{"name":"Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing","volume":"8 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3293611.3331593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

We consider the disjoint set union problem in the asynchronous shared memory multiprocessor computation model. We design a randomized algorithm that performs at most O(log n) work per operation (with high probability), and performs at most O(m #8226; (α(n, m/(np)) + log(np/m + 1)) total work in expectation for a problem instance with m operations on n elements solved by p processes. Our algorithm is the first to have work bounds that grow sublinearly with p against an adversarial scheduler. We use Jayanti's Wake Up problem and our newly defined Generalized Wake Up problem to prove several lower bounds on concurrent set union. We show an Ω(log min {n,p}) expected work lower bound on the cost of any single operation on a set union algorithm. This shows that our single-operation upper bound is optimal across all algorithms when p = nΩ(1). Furthermore, we identify a class of "symmetric algorithms'' that captures the complexities of all the known algorithms for the disjoint set union problem, and prove an Ω(m•(α(n, m(np)) + log(np/m + 1))) expected total work lower bound on algorithms of this class, thereby showing that our algorithm has optimal total work complexity for this class. Finally, we prove that any randomized algorithm, symmetric or not, cannot breach an Ω(m •(α(n, m/n) + log log(np/m + 1))) expected total work lower bound.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随机并发集并集与广义唤醒
考虑异步共享内存多处理器计算模型中的不相交集并问题。我们设计了一个随机算法,每次操作最多执行O(log n)个工作(高概率),最多执行O(m# 8226;(α(n, m/(np)) + log(np/m + 1))对于一个有p个过程解决的n个元素的m个操作的问题实例的总期望功。我们的算法是第一个对一个对抗性调度具有随p次线性增长的工作边界的算法。利用Jayanti唤醒问题和我们新定义的广义唤醒问题证明了并发集并的几个下界。我们给出了一个Ω(log min {n,p})期望工作的下界,它是对集合并集算法的任何单个操作的代价。这表明当p = nΩ(1)时,我们的单操作上界在所有算法中都是最优的。进一步,我们确定了一类“对称算法”,它捕获了不相交集并问题的所有已知算法的复杂性,并证明了该类算法的Ω(m•(α(n, m(np)) + log(np/m + 1)))的期望总工作下界,从而表明我们的算法具有该类的最佳总工作复杂度。最后,我们证明了任何随机化算法,无论对称与否,都不能突破Ω(m•(α(n, m/n) + log log(np/m + 1)))的期望总功下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
2019 Principles of Distributed Computing Doctoral Dissertation Award How to Spread a Rumor: Call Your Neighbors or Take a Walk? Massively Parallel Computation of Matching and MIS in Sparse Graphs Vorpal Message Reduction in the LOCAL Model is a Free Lunch
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1