Multi-Level Image Segmentatión in Slit-Lamp Images: A Comparison Between two Machine Learning Techniques

H. Morales-Lopez, Israel Cruz-Vega, J. Ramírez-Cortés, H. Peregrina-Barreto, J. Rangel-Magdaleno
{"title":"Multi-Level Image Segmentatión in Slit-Lamp Images: A Comparison Between two Machine Learning Techniques","authors":"H. Morales-Lopez, Israel Cruz-Vega, J. Ramírez-Cortés, H. Peregrina-Barreto, J. Rangel-Magdaleno","doi":"10.1109/COLCACI.2018.8484844","DOIUrl":null,"url":null,"abstract":"Many computer algorithms have been developed, providing an initial aided diagnosis to the medical expertise. Most important previous stage in the automatic classificatión to grading diseases using images is to obtain a well-segmented región of interest from. Several related research in image classificatión uses a great number of image processing techniques previous to the classificatión stage. In this paper, we compare the automatic segmentatión based on two leading machine learning techniques: Differential Evolutión (DE) and the Self-Organizing Multilayer (SOM) Neural Network (NN) methods. The results are also compared with K-means algorithm for multi-level segmentatión from slit-lamp images. Segmented images were obtained relying on a thresholding approach based on fuzzy partitións of the image histogram and a fuzzy entropy measure optimized via a neural process and by the evolutive technique. The resulting approaches were also compared with the classical Shannon entropy.","PeriodicalId":138992,"journal":{"name":"2018 IEEE 1st Colombian Conference on Applications in Computational Intelligence (ColCACI)","volume":"67 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 1st Colombian Conference on Applications in Computational Intelligence (ColCACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COLCACI.2018.8484844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Many computer algorithms have been developed, providing an initial aided diagnosis to the medical expertise. Most important previous stage in the automatic classificatión to grading diseases using images is to obtain a well-segmented región of interest from. Several related research in image classificatión uses a great number of image processing techniques previous to the classificatión stage. In this paper, we compare the automatic segmentatión based on two leading machine learning techniques: Differential Evolutión (DE) and the Self-Organizing Multilayer (SOM) Neural Network (NN) methods. The results are also compared with K-means algorithm for multi-level segmentatión from slit-lamp images. Segmented images were obtained relying on a thresholding approach based on fuzzy partitións of the image histogram and a fuzzy entropy measure optimized via a neural process and by the evolutive technique. The resulting approaches were also compared with the classical Shannon entropy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
裂隙灯图像中的多级图像Segmentatión:两种机器学习技术的比较
已经开发了许多计算机算法,为医学专家提供初步的辅助诊断。在利用图像自动classificatión进行疾病分级中,最重要的前一个阶段是获得一个良好分割的感兴趣的región。image classificatión的一些相关研究使用了大量在classificatión阶段之前的图像处理技术。在本文中,我们比较了基于两种领先的机器学习技术的自动segmentatión:微分Evolutión (DE)和自组织多层神经网络(SOM)方法。并与K-means算法对裂隙灯图像的多级segmentatión进行了比较。采用基于图像直方图模糊partitións的阈值分割方法和基于神经过程和进化技术优化的模糊熵测度获得分割图像。并与经典香农熵进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Continuous Surveillance By Tele-consults Based on Monte Carlo Algorithms to Anticipate and Lessen Risk Levels Due to Type-2 Diabetes Complications Applying Data Mining Techniques to Predict Student Dropout: A Case Study Implementation of a neural control system based on PI control for a non-linear process Application of Transfer Learning for Object Recognition Using Convolutional Neural Networks Comparison of Evolutionary Algorithms for Estimation of Parameters of the Equivalent Circuit of an AC Motor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1