Biological Cell Image Segmentation Using Novel Hybrid Morphology-Based Method

Jiezhen Xie, Xiaoqing Yu, Xuling Zheng
{"title":"Biological Cell Image Segmentation Using Novel Hybrid Morphology-Based Method","authors":"Jiezhen Xie, Xiaoqing Yu, Xuling Zheng","doi":"10.1109/ISCID.2012.202","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel hybrid method for the segmentation and automatic counting of biological cell image. The method is based on techniques of morphology, thresholding and watershed. It performs well in low contrast image where gradient-based method may fail. Experimental results on practical cell images are shown in the paper with the emphasis on the comparisons between the novel hybrid method and the gradient-based methods: Sobel [1], Canny [2] and GAC [3] of level-set.","PeriodicalId":246432,"journal":{"name":"2012 Fifth International Symposium on Computational Intelligence and Design","volume":"8 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fifth International Symposium on Computational Intelligence and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCID.2012.202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we propose a novel hybrid method for the segmentation and automatic counting of biological cell image. The method is based on techniques of morphology, thresholding and watershed. It performs well in low contrast image where gradient-based method may fail. Experimental results on practical cell images are shown in the paper with the emphasis on the comparisons between the novel hybrid method and the gradient-based methods: Sobel [1], Canny [2] and GAC [3] of level-set.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于混合形态学的生物细胞图像分割方法
本文提出了一种新的生物细胞图像分割与自动计数的混合方法。该方法基于形态学、阈值和分水岭技术。它在低对比度图像中表现良好,而基于梯度的方法可能会失败。文中给出了实际细胞图像上的实验结果,重点比较了新型混合方法与基于梯度的Sobel[1]、Canny[2]、GAC[3]的水平集方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Improved Algorithm of Slotted-ALOHA Based on Multichannel Statistics Research for Traceability Model of Material Supply Quality in Construction Project Auto-Tuning Mapping Strategy for Parallel CFD Program An Algorithm of Dim and Small Target Detection Based on Wavelet Transform and Image Fusion The Application of Mi200E in PLC Communication System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1