Detection of gait abnormality through leg symmetry and temporal parameters

Chester Rei E. Duhaylungsod, Czarina Eloise B. Magbitang, Jan Faith Isaac R. Mercado, George Elison D. Osido, Shannen Andrea C. Pecho, Angelo R. dela Cruz
{"title":"Detection of gait abnormality through leg symmetry and temporal parameters","authors":"Chester Rei E. Duhaylungsod, Czarina Eloise B. Magbitang, Jan Faith Isaac R. Mercado, George Elison D. Osido, Shannen Andrea C. Pecho, Angelo R. dela Cruz","doi":"10.1109/HNICEM.2017.8269519","DOIUrl":null,"url":null,"abstract":"This paper proposes a method for detecting gait abnormality through the correlation between the thighs and shanks of the left and right leg of the subjects and the comparison of temporal parameters by using MetaMotionR — an Inertial Measurement Unit (IMU) sensor from Mbientlab. Temporal gait parameters which can be derived in this study are double limb support time, gait cycle time or stride time, stance time, swing time, and step time. Using the method proposed, the results of the correlation of the thigh and shank of both left and right leg shows a value which is close to 1 which indicates that symmetry between both legs. On an average of 31.93% difference among all temporal parameters, the normal gait and the abnormal gait can be compared and shows that the temporal parameters for the gait with abnormality has a larger value due to the knee injury.","PeriodicalId":104407,"journal":{"name":"2017IEEE 9th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM)","volume":"69 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017IEEE 9th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HNICEM.2017.8269519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

This paper proposes a method for detecting gait abnormality through the correlation between the thighs and shanks of the left and right leg of the subjects and the comparison of temporal parameters by using MetaMotionR — an Inertial Measurement Unit (IMU) sensor from Mbientlab. Temporal gait parameters which can be derived in this study are double limb support time, gait cycle time or stride time, stance time, swing time, and step time. Using the method proposed, the results of the correlation of the thigh and shank of both left and right leg shows a value which is close to 1 which indicates that symmetry between both legs. On an average of 31.93% difference among all temporal parameters, the normal gait and the abnormal gait can be compared and shows that the temporal parameters for the gait with abnormality has a larger value due to the knee injury.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过腿部对称性和时间参数检测步态异常
本文提出了一种利用Mbientlab的惯性测量单元(IMU)传感器MetaMotionR,通过受试者左右腿的大腿和小腿之间的相关性以及时间参数的比较来检测步态异常的方法。本研究可导出的时间步态参数包括双肢支撑时间、步态周期时间或步幅时间、站立时间、摆动时间和步幅时间。利用所提出的方法,左腿和右腿的大腿和小腿的相关值接近于1,表明两条腿之间是对称的。正常步态与异常步态的时间参数平均差值为31.93%,说明由于膝关节损伤导致异常步态的时间参数值较大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Real-time flood water level monitoring system with SMS notification Energy audit and analysis of the electricity consumption of an educational building in the Philippines for smart consumption Microcontroller and app-based air quality monitoring system for particulate matter 2.5 (PM2.5) and particulate matter 1 (PM1) TRANSPRO: An educational tool for the design and analysis of power transmission lines Sitting posture assessment using computer vision
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1