{"title":"Concurrent measurement of sample and reference waveforms in an optical-pump terahertz-probe system using a controlled optical diaphragm shutter","authors":"J. Afalla, H. Kitahara, T. Moriyasu, M. Tani","doi":"10.14710/JPA.V1I2.4659","DOIUrl":null,"url":null,"abstract":"We present concurrent measurement of sample and reference terahertz waveforms for an optical-pump terahertz-probe spectrometer, using a controlled optical diaphragm shutter for the optical pump line. When waveforms are taken consecutively, laser power fluctuations and other experimental conditions can introduce spectral artefacts, thus a concurrent measurement is preferred. Instead of techniques based on double modulation, the use of the diaphragm shutter eliminates the need for a second lock-in amplifier and/or constricted alignment due to the use of a single chopper blade for modulating two signals, simultaneously. Drude fitting of the complex conductivity obtained for GaAs confirms that measurements obtained using our set-up agree with reported scattering times.","PeriodicalId":280868,"journal":{"name":"Journal of Physics and Its Applications","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/JPA.V1I2.4659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We present concurrent measurement of sample and reference terahertz waveforms for an optical-pump terahertz-probe spectrometer, using a controlled optical diaphragm shutter for the optical pump line. When waveforms are taken consecutively, laser power fluctuations and other experimental conditions can introduce spectral artefacts, thus a concurrent measurement is preferred. Instead of techniques based on double modulation, the use of the diaphragm shutter eliminates the need for a second lock-in amplifier and/or constricted alignment due to the use of a single chopper blade for modulating two signals, simultaneously. Drude fitting of the complex conductivity obtained for GaAs confirms that measurements obtained using our set-up agree with reported scattering times.