LSTM recurrent neural networks for high resolution range profile based radar target classification

V. Jithesh, M. Sagayaraj, K. Srinivasa
{"title":"LSTM recurrent neural networks for high resolution range profile based radar target classification","authors":"V. Jithesh, M. Sagayaraj, K. Srinivasa","doi":"10.1109/CIACT.2017.7977298","DOIUrl":null,"url":null,"abstract":"Positive and timely identification of targets is critical in any military scenario. Target identification from backscattered electromagnetic energy is an evolving area. The objective of this paper is to study the applicability of Long Short-Term Memory Recurrent Neural Network (LSTM RNN) for High Resolution Range Profile (HRRP) based Radar target classification. Simulated Radar Range Profile data is used here. Three Different Target models are considered in this study. The classification is performed using a LSTM RNN.","PeriodicalId":218079,"journal":{"name":"2017 3rd International Conference on Computational Intelligence & Communication Technology (CICT)","volume":"30 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 3rd International Conference on Computational Intelligence & Communication Technology (CICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIACT.2017.7977298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

Positive and timely identification of targets is critical in any military scenario. Target identification from backscattered electromagnetic energy is an evolving area. The objective of this paper is to study the applicability of Long Short-Term Memory Recurrent Neural Network (LSTM RNN) for High Resolution Range Profile (HRRP) based Radar target classification. Simulated Radar Range Profile data is used here. Three Different Target models are considered in this study. The classification is performed using a LSTM RNN.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于LSTM递归神经网络的高分辨率距离像雷达目标分类
在任何军事情况下,积极和及时地确定目标都是至关重要的。后向散射电磁能目标识别是一个不断发展的领域。研究长短期记忆递归神经网络(LSTM RNN)在基于高分辨率距离像(HRRP)的雷达目标分类中的适用性。这里使用的是模拟雷达距离廓线数据。本研究考虑了三种不同的目标模型。使用LSTM RNN执行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Smart solar tracking system for optimal power generation SVM with Gaussian kernel-based image spam detection on textual features Comparison between LDA & NMF for event-detection from large text stream data Research on the wisdom education platform of cloud computing architecture Robust TS fuzzy controller for helicopter via parallel distributed compensation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1