Bottom-up Pittsburgh approach for discovery of classification rules

Priyanka Sharma, S. Ratnoo
{"title":"Bottom-up Pittsburgh approach for discovery of classification rules","authors":"Priyanka Sharma, S. Ratnoo","doi":"10.1109/IC3I.2014.7019579","DOIUrl":null,"url":null,"abstract":"This paper presents bottom-up Pittsburgh approach for discovery of classification rules. Population initialization makes use of entropy as the attribute significance measure and contains variable sized organizations. Each organization contains a set of IF-THEN rules. As bottom-up approach is employed, so traditional operators are not feasible and efficient to use. Therefore, four evolutionary operators are devised for realizing the evolutionary operations performed on organizations. Bottom-up Pittsburgh approach gives best set of rule having good accuracy. In experiments, the effectiveness of the proposed algorithm is evaluated by comparing the results of bottom-up Pittsburgh with and without entropy to the top-down Michigan approach with and without entropy on 10 datasets from the UCI and KEEL repository. All results show that bottom-up Pittsburgh approach achieves a higher predictive accuracy and is more consistent.","PeriodicalId":430848,"journal":{"name":"2014 International Conference on Contemporary Computing and Informatics (IC3I)","volume":"29 17","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Contemporary Computing and Informatics (IC3I)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3I.2014.7019579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents bottom-up Pittsburgh approach for discovery of classification rules. Population initialization makes use of entropy as the attribute significance measure and contains variable sized organizations. Each organization contains a set of IF-THEN rules. As bottom-up approach is employed, so traditional operators are not feasible and efficient to use. Therefore, four evolutionary operators are devised for realizing the evolutionary operations performed on organizations. Bottom-up Pittsburgh approach gives best set of rule having good accuracy. In experiments, the effectiveness of the proposed algorithm is evaluated by comparing the results of bottom-up Pittsburgh with and without entropy to the top-down Michigan approach with and without entropy on 10 datasets from the UCI and KEEL repository. All results show that bottom-up Pittsburgh approach achieves a higher predictive accuracy and is more consistent.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
发现分类规则的自底向上匹兹堡方法
提出了一种自底向上的匹兹堡分类规则发现方法。种群初始化利用熵作为属性显著性度量,包含可变大小的组织。每个组织都包含一组IF-THEN规则。由于采用自底向上的方法,传统的操作方法不可行,效率也不高。因此,设计了四种演化算子来实现对组织执行的演化操作。自底向上的匹兹堡方法给出了精度较高的最佳规则集。在实验中,通过比较有和没有熵的自下而上的匹兹堡方法与有和没有熵的自上而下的密歇根方法在UCI和KEEL存储库的10个数据集上的结果,评估了所提出算法的有效性。结果表明,自下而上的匹兹堡方法具有更高的预测精度和一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Smart home and smart city solutions enabled by 5G, IoT, AAI and CoT services Video retrieval: An accurate approach based on Kirsch descriptor Microarray data classification using Fuzzy K-Nearest Neighbor Assessment of data quality in Web sites: towards a model A novel cross layer wireless mesh network protocol for distributed generation in electrical networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1