Parameter adjustment of finger vein recognition algorithms

He Zheng, Yapeng Ye, Shilei Liu, Liao Ni, Yi Zhang, Houjun Huang, Wenxin Li
{"title":"Parameter adjustment of finger vein recognition algorithms","authors":"He Zheng, Yapeng Ye, Shilei Liu, Liao Ni, Yi Zhang, Houjun Huang, Wenxin Li","doi":"10.1109/ISBA.2017.7947697","DOIUrl":null,"url":null,"abstract":"Finger vein recognition is a biometric method utilizing the vein patterns inside one's fingers for personal identification. Recognition algorithm is the key part of a finger vein recognition system, dominating the system performance. There are usually a lot of parameters in algorithms, and different values of the parameters could lead to different system performance so that it is essential to set a proper value for each parameter in practice. In this paper, we conduct a set of experiments to study how the parameters influence the performance measured by equal error rate. We have made two observations from the results: 1.When an algorithm is applied on a dataset, the performance differs a lot as the parameter value changes even in a small range; 2.When an algorithm is applied on different datasets, the performance differs a lot, in other words, the optimized parameter value combination that maximizes the system performance differs significantly. These two observations reveal the importance of parameter adjustment in finger vein recognition. So this paper proposes two solutions: search algorithm and estimation by subset, which are fast, accurate and scalable methods to find the best parameters. The experiment results prove the effectiveness of our methods.","PeriodicalId":436086,"journal":{"name":"2017 IEEE International Conference on Identity, Security and Behavior Analysis (ISBA)","volume":"28 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Identity, Security and Behavior Analysis (ISBA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBA.2017.7947697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Finger vein recognition is a biometric method utilizing the vein patterns inside one's fingers for personal identification. Recognition algorithm is the key part of a finger vein recognition system, dominating the system performance. There are usually a lot of parameters in algorithms, and different values of the parameters could lead to different system performance so that it is essential to set a proper value for each parameter in practice. In this paper, we conduct a set of experiments to study how the parameters influence the performance measured by equal error rate. We have made two observations from the results: 1.When an algorithm is applied on a dataset, the performance differs a lot as the parameter value changes even in a small range; 2.When an algorithm is applied on different datasets, the performance differs a lot, in other words, the optimized parameter value combination that maximizes the system performance differs significantly. These two observations reveal the importance of parameter adjustment in finger vein recognition. So this paper proposes two solutions: search algorithm and estimation by subset, which are fast, accurate and scalable methods to find the best parameters. The experiment results prove the effectiveness of our methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
手指静脉识别算法参数调整
手指静脉识别是一种利用手指静脉形态进行个人识别的生物识别方法。识别算法是指静脉识别系统的关键部分,决定着系统的性能。算法中通常有很多参数,不同的参数值会导致不同的系统性能,因此在实际应用中为每个参数设置一个合适的值是很有必要的。在本文中,我们进行了一组实验来研究参数对等错误率测量性能的影响。从结果中我们得出了两点观察结果:1。当算法应用于数据集时,即使在很小的范围内,参数值的变化也会导致性能差异很大;2.当一种算法应用于不同的数据集时,性能差异很大,即使系统性能最大化的优化参数值组合差异很大。这两个结果揭示了参数调整在手指静脉识别中的重要性。为此,本文提出了搜索算法和子集估计两种快速、准确、可扩展的最佳参数求解方法。实验结果证明了方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Touch gesture-based authentication: A security analysis of Pattern Unlock An enhanced statistical approach for median filtering detection using difference image Analysis of adaptability of deep features for verifying blurred and cross-resolution images A hybrid model for CFA interpolation detection A discriminative spatio-temporal mapping of face for liveness detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1