Implementasi Ekstraksi Ciri Histogram dan K-Nearest Neighbor untuk Klasifikasi Jenis Tanah di Kota Banjar, Jawa Barat

Rudi Rudi, Donny Avianto
{"title":"Implementasi Ekstraksi Ciri Histogram dan K-Nearest Neighbor untuk Klasifikasi Jenis Tanah di Kota Banjar, Jawa Barat","authors":"Rudi Rudi, Donny Avianto","doi":"10.24002/jbi.v10i2.2141","DOIUrl":null,"url":null,"abstract":"Land plays an essential role in the availability of nutrients and water to support our life on earth. Soil quality can be seen from the characteristics of color and texture. By knowing the quality of the soil, we can determine the type of plant that is most suitable for planting. In this study, we conducted a study of soil quality at Langensari. Langensari was chosen because most of the region has an altitude of fewer than 25 meters above sea level, so it is very potent as an agricultural and planta-tion area. The proposed system uses a cross-sectional image of the ground as input. The image is then extracted using histo-gram feature extraction to obtain the intensity, standard deviation, skewness, energy, entropy and smoothness values. K-Nearest Neighbor then used to classify resulting features. The proposed system was tested using 20 test images. Based on the experiment result, the system can classify soil types appropriately with accuracy reaching 60% when value of K = 3.","PeriodicalId":381749,"journal":{"name":"Jurnal Buana Informatika","volume":"56 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Buana Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24002/jbi.v10i2.2141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Land plays an essential role in the availability of nutrients and water to support our life on earth. Soil quality can be seen from the characteristics of color and texture. By knowing the quality of the soil, we can determine the type of plant that is most suitable for planting. In this study, we conducted a study of soil quality at Langensari. Langensari was chosen because most of the region has an altitude of fewer than 25 meters above sea level, so it is very potent as an agricultural and planta-tion area. The proposed system uses a cross-sectional image of the ground as input. The image is then extracted using histo-gram feature extraction to obtain the intensity, standard deviation, skewness, energy, entropy and smoothness values. K-Nearest Neighbor then used to classify resulting features. The proposed system was tested using 20 test images. Based on the experiment result, the system can classify soil types appropriately with accuracy reaching 60% when value of K = 3.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
土地在提供营养和水以维持我们在地球上的生命方面起着至关重要的作用。土壤质量可以从颜色和质地的特征看出。通过了解土壤的质量,我们可以确定最适合种植的植物类型。在这项研究中,我们对Langensari的土壤质量进行了研究。之所以选择朗根萨里,是因为该地区的大部分地区海拔不到25米,因此它非常适合作为农业和种植园区。所提出的系统使用地面的横截面图像作为输入。然后利用直方图特征提取对图像进行提取,得到图像的强度、标准差、偏度、能量、熵和平滑度值。然后使用k近邻对结果特征进行分类。使用20张测试图像对所提出的系统进行了测试。实验结果表明,当K = 3时,该系统能较好地对土壤类型进行分类,准确率达到60%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Blackbox Testing on Virtual Reality Gamelan Saron Using Equivalence Partition Method Implementasi Perbaikan Kualitas Citra Tanaman terhadap Perbedaan Kamera untuk Prediksi Pigmen Fotosintesis berbasis Machine Learning Comparative Analysis of Sound Response from Simple and Fuzzy Algorithm in Saron Virtual Reality Klasterisasi Puskesmas dengan K-Means Berdasarkan Data Kualitas Kesehatan Keluarga dan Gizi Masyarakat Analisis Sentimen Ulasan Aplikasi Jamsostek Mobile Menggunakan Metode Support Vector Machine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1