Tracking targets with unknown process noise variance using adaptive Kalman filtering

P. Gutman, M. Velger
{"title":"Tracking targets with unknown process noise variance using adaptive Kalman filtering","authors":"P. Gutman, M. Velger","doi":"10.1109/CDC.1988.194435","DOIUrl":null,"url":null,"abstract":"A simple algorithm is suggested to estimate, using a Kalman filter, the unknown process noise variance of an otherwise known linear plant. The process noise variance estimator is essentially dead beat, using the difference between the expected prediction error variance, computed in the Kalman filter, and the measured prediction error variance. The estimate is used to adapt the Kalman filter. The use of the adaptive filter is demonstrated in a simulated example in which a wildly manoeuvring target is tracked.<<ETX>>","PeriodicalId":113534,"journal":{"name":"Proceedings of the 27th IEEE Conference on Decision and Control","volume":"25 9-10","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1988.194435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

A simple algorithm is suggested to estimate, using a Kalman filter, the unknown process noise variance of an otherwise known linear plant. The process noise variance estimator is essentially dead beat, using the difference between the expected prediction error variance, computed in the Kalman filter, and the measured prediction error variance. The estimate is used to adapt the Kalman filter. The use of the adaptive filter is demonstrated in a simulated example in which a wildly manoeuvring target is tracked.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用自适应卡尔曼滤波对过程噪声方差未知的目标进行跟踪
提出了一种简单的算法,利用卡尔曼滤波估计未知过程噪声方差的线性植物。过程噪声方差估计器本质上是死拍的,使用在卡尔曼滤波器中计算的预期预测误差方差与测量的预测误差方差之间的差。该估计用于自适应卡尔曼滤波器。通过对一个剧烈机动目标的跟踪仿真,说明了自适应滤波器的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On structured singular values Multivariable control system synthesis based on the unknown-but-bounded disturbance model Control and stabilization of a flexible beam attached to a rigid body: planar motion General H/sup infinity / optimization: numerical advice and a way to treat plant uncertainty On a boundedness conjecture for output error adaptive algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1