Measuring Embedded Human-Like Biases in Face Recognition Models

Sangeun Lee, Soyoung Oh, Minji Kim, Eunil Park
{"title":"Measuring Embedded Human-Like Biases in Face Recognition Models","authors":"Sangeun Lee, Soyoung Oh, Minji Kim, Eunil Park","doi":"10.3390/cmsf2022003002","DOIUrl":null,"url":null,"abstract":": Recent works in machine learning have focused on understanding and mitigating bias in data and algorithms. Because the pre-trained models are trained on large real-world data, they are known to learn implicit biases in a way that humans unconsciously constructed for a long time. However, there has been little discussion about social biases with pre-trained face recognition models. Thus, this study investigates the robustness of the models against racial, gender, age, and an intersectional bias. We also present the racial bias with a different ethnicity other than white and black: Asian. In detail, we introduce the Face Embedding Association Test (FEAT) to measure the social biases in image vectors of faces with different race, gender, and age. It measures social bias in the face recognition models under the hypothesis that a specific group is more likely to be associated with a particular attribute in a biased manner. The presence of these biases within DeepFace, DeepID, VGGFace, FaceNet, OpenFace, and ArcFace critically mitigate the fairness in our society.","PeriodicalId":127261,"journal":{"name":"AAAI Workshop on Artificial Intelligence with Biased or Scarce Data (AIBSD)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAAI Workshop on Artificial Intelligence with Biased or Scarce Data (AIBSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/cmsf2022003002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

: Recent works in machine learning have focused on understanding and mitigating bias in data and algorithms. Because the pre-trained models are trained on large real-world data, they are known to learn implicit biases in a way that humans unconsciously constructed for a long time. However, there has been little discussion about social biases with pre-trained face recognition models. Thus, this study investigates the robustness of the models against racial, gender, age, and an intersectional bias. We also present the racial bias with a different ethnicity other than white and black: Asian. In detail, we introduce the Face Embedding Association Test (FEAT) to measure the social biases in image vectors of faces with different race, gender, and age. It measures social bias in the face recognition models under the hypothesis that a specific group is more likely to be associated with a particular attribute in a biased manner. The presence of these biases within DeepFace, DeepID, VGGFace, FaceNet, OpenFace, and ArcFace critically mitigate the fairness in our society.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
测量人脸识别模型中嵌入的类人偏见
最近在机器学习方面的工作主要集中在理解和减轻数据和算法中的偏见。由于预先训练的模型是在大量现实世界数据上训练的,因此已知它们以一种人类长期无意识地构建的方式学习隐性偏见。然而,关于预先训练的人脸识别模型的社会偏见的讨论很少。因此,本研究考察了模型对种族、性别、年龄和交叉偏差的稳健性。我们还呈现了一个不同于白人和黑人的种族偏见:亚洲人。详细地,我们引入了人脸嵌入关联测试(FEAT)来测量不同种族、性别和年龄的人脸图像向量中的社会偏见。它测量了人脸识别模型中的社会偏见,假设一个特定的群体更有可能以一种偏见的方式与特定的属性联系在一起。这些偏见在DeepFace、DeepID、VGGFace、FaceNet、OpenFace和ArcFace中的存在严重削弱了我们社会的公平性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statement of Peer Review Age Should Not Matter: Towards More Accurate Pedestrian Detection via Self-Training Extracting Salient Facts from Company Reviews with Scarce Labels Dual Complementary Prototype Learning for Few-Shot Segmentation Super-Resolution for Brain MR Images from a Significantly Small Amount of Training Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1